使用tensorboard将卷积的过程可视化

本篇文章主要介绍如何使用tensorboard来分析在训练过程中损失值准确率以及权重偏置的变化,来帮助我们更好的分析系统是不是按照我们的要求进行着。还包括卷积的过程可视化,卷积过程是一个黑箱操作,我们也不知道它究竟做了什么。不过我们可以通过反卷积操作,来完成卷积的可视化,来分析卷积所记住的特征是不是我们想要的。在使用tensorboard来进行可视化分析的时候,主要是利用了手写数字识别来完成的。

一、Tensorboard介绍

tensorboard是TensorFlow自带的一个强大的可视化工具,是一个基于web服务的可视化工具。tensorboard包括了7种可视化,即SCALARS、IMAGES、AUDIO、GRAPHS、DISTRIBUTIONS、HISTOGRAMSEMBEDDINGS。这几种功能如下:

SCALARS:标量,用来展示训练过程中准确率、损失值、权重/偏置的变化过程。

IMAGES:图片,用来展示训练过程中图片的变化情况。

AUDIO:声音,用来记录训练过程中的音频。

GRAPHS:计算图,用来展示模型的数据流图,以及训练在各个设备上消耗的内存和时间。

DISTRIBUTIONS:数据分布,用来展示训练过程中数据的分布图。

HISTOGRAMS:直方图,用来展示训练过程中数据的直方图。

EMBEDDINGS:嵌入向量,展示词向量后(如word2vec)的投影分布。

二、Tensorboard的使用

tensorflow内置了几个函数用来记录数据的变化

1、记录标量

tf.summary.scalar

参数:

name:生成的节点名称,保存在tensorboard中

tensor:TensorFlow中的张量

2、记录直方图

tf.summary.histogram

参数:

name:生成的节点名称,保存在tensorboard中

tensor:TensorFlow中的张量

3、记录图片

tf.summary.image

参数:

name:生成的节点名称,保存在tensorboard中

tensor:一个4维的tensor([batch_size,height,width,channels]),其中channels为1或3或4,tensor的类型为uint8或float32

max_outputs:在一个batch中记录的图片的数量,默认是3

4、记录数据的分布图

tf.summary.distribution

参数:

name:生成的节点名称,保存在tensorboard中

tensor:TensorFlow中的张量

5、定义一个函数用来记录标量的变化信息

#用来计算权重和偏置的均值和方差
def variable_summaries(var):
    #统计参数的均值,并记录
    with tf.name_scope("summaries"):
        mean = tf.reduce_mean(var)
        tf.summary.scalar("mean",mean)
    #计算参数的标准差
    with tf.name_scope("stddev"):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar("stddev",stddev)
    #统计参数的最大最小值
    tf.summary.scalar("max",tf.reduce_max(var))
    tf.summary.scalar("min",tf.reduce_min(var))
    #用直方图统计参数的分布
    tf.summary.histogram("histogram",var)

6、卷积的可视化

卷积的可视化,主要是卷积后的结果进行反卷积(卷积的转置)、反卷积的过程其实也是做一个卷积操作,如果经过池化处理和激活函数处理还需要进行反池化和反激活函数。TensorFlow中内置了反卷积函数,目前还没有反池化和反激活函数,需要自己来实现。反卷积函数

tf.nn.conv2d_transpose

参数:

value:卷积之后的输出,是一个4维的tensor,数据类型为float,shape根据data_format参数的设置有关,如果data_format为"NHWC"则shape为[batch,height,width,in_channels],如果data_format为"NCHW"则shape为[batch,in_channels,height,width]。

filter:卷积核,4维的tensor,与卷积的shape有关,shape为[height,width,output_channels,in_channels],注意output_channels和in_channels的顺序,与卷积刚好相反,需要特别注意,如果shape不匹配则会报错

output_shape:输出设置

strides:卷积步长

padding:填充方式,为"SAME"或"VALID"与卷积相同。

data_format:数据格式,有两种"NHWC"或"NCHW",默认为"NHWC"。

三、tensorboard可视化实例

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

#初始化权重函数
def weight_variable(shape):
    #使用截断的正态分布来初始化权重,并保持权重的方差为0.1
    initial = tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)

#初始化偏置项
def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)

#定义卷积函数
def conv2d(x,w):
    return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding='SAME')

#定义一个2*2的最大池化层
def max_pool_2_2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#用来计算权重和偏置的均值和方差
def variable_summaries(var):
    #统计参数的均值,并记录
    with tf.name_scope("summaries"):
        mean = tf.reduce_mean(var)
        tf.summary.scalar("mean",mean)
    #计算参数的标准差
    with tf.name_scope("stddev"):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar("stddev",stddev)
    #统计参数的最大最小值
    tf.summary.scalar("max",tf.reduce_max(var))
    tf.summary.scalar("min",tf.reduce_min(var))
    #用直方图统计参数的分布
    tf.summary.histogram("histogram",var)

#tensorboard的日志保存目录
log_dir = "log"
if __name__ == "__main__":
    with tf.name_scope("input"):
        #定义输入变量
        x = tf.placeholder("float",shape=[None,784])
        #定义输出变量
        y_ = tf.placeholder("float",shape=[None,10])
    with tf.name_scope("input_image"):
         #将输入的x转成一个4D向量,第2、3维对应图片的宽高,最后一维代表图片的颜色通道数
        # 输入的图像为灰度图,所以通道数为1,如果是RGB图,通道数为3
        # tf.reshape(x,[-1,28,28,1])的意思是将x自动转换成28*28*1的数组
        # -1的意思是代表不知道x的shape,它会按照后面的设置进行转换
        x_image = tf.reshape(x,[-1,28,28,1])
        #将image保存到tensorboard中
        tf.summary.image("input",x_image,10)
    with tf.name_scope("conv1"):
        #初始化权重,第一层卷积,32的意思代表的是输出32个通道
        # 其实,也就是设置32个卷积,每一个卷积都会对图像进行卷积操作
        with tf.name_scope("weights"):
            w_conv1 = weight_variable([5,5,1,32])
            variable_summaries(w_conv1)
        #初始化偏置项
        with tf.name_scope("bias"):
            b_conv1 = bias_variable([32])
            variable_summaries(b_conv1)
        with tf.name_scope("relu_output"):
            #第一层卷积
            conv1 = conv2d(x_image,w_conv1) + b_conv1
            # Relu激活函数
            h_conv1 = tf.nn.relu(conv1)
        with tf.name_scope("max_pool"):
            #池化
            h_pool1 = max_pool_2_2(h_conv1)
    # tf.summary.image("conv1_relu_image",reverse_conv2d(conv1,[5,5,1,32],[50,28,28,1]),10)
    # #保存通过激活函数之后的图片
    # tf.summary.image("conv1_relu_image",reverse_conv2d(h_conv1,[5,5,1,32],[50,28,28,1]),10)
    # #保存经过最大池化的图片
    # tf.summary.image("conv1_max_pool_image",reverse_conv2d(h_conv1,[5,5,1,32],[50,28,28,1]),10)
    with tf.name_scope("conv2"):
        with tf.name_scope("weights"):
             #第二层卷积
            #初始权重
            w_conv2 = weight_variable([5,5,32,64])
            variable_summaries(w_conv2)
        with tf.name_scope("bias"):
            #初始化偏置项
            b_conv2 = bias_variable([64])
            variable_summaries(b_conv2)
        with tf.name_scope("relu_output"):
            #第二层卷积
            conv2 = conv2d(h_pool1,w_conv2) + b_conv2
            h_conv2 = tf.nn.relu(conv2)
        with tf.name_scope("max_pool"):
            #池化
            h_pool2 = max_pool_2_2(h_conv2)
    #反卷积层
    with tf.name_scope("reverse_conv1") as scope:
        reverse_weight1 = weight_variable([5,5,32,64])
        reverse_conv1 = tf.nn.conv2d_transpose(conv2,reverse_weight1,[50,14,14,32],strides=[1,1,1,1],padding="SAME")
        reverse_weight2 = weight_variable([5,5,1,32])
        reverse_conv2 = tf.nn.conv2d_transpose(reverse_conv1,reverse_weight2,[50,28,28,1],strides=[1,2,2,1],padding="SAME")

        reverse_weight3 = weight_variable([5,5,1,32])
        reverse_conv3 = tf.nn.conv2d_transpose(conv1,reverse_weight3,[50,28,28,1],strides=[1,1,1,1],padding="SAME")
    tf.summary.image("reverse_conv2",reverse_conv2,10)
    tf.summary.image("reverse_conv1",reverse_conv3,10)
    with tf.name_scope("fc1"):
        with tf.name_scope("weights"):
            # 设置全连接层的权重
            w_fc1 = weight_variable([7*7*64,1024])
            variable_summaries(w_fc1)
        with tf.name_scope("bias"):
            # 设置全连接层的偏置
            b_fc1 = bias_variable([1024])
            variable_summaries(b_fc1)
        with tf.name_scope("relu_output"):
            # 将第二层卷积池化后的结果,转成一个7*7*64的数组
            h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
            # 通过全连接之后并激活
            h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1) + b_fc1)
        with tf.name_scope("dropout"):
            # 防止过拟合
            keep_prob = tf.placeholder("float")
            h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    with tf.name_scope("fc2"):
        with tf.name_scope("weights"):
            #输出层
            w_fc2 = weight_variable([1024,10])
            variable_summaries(w_fc2)
        with tf.name_scope("bias"):
            b_fc2 = bias_variable([10])
            variable_summaries(b_fc2)
        with tf.name_scope("output"):
            y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2) + b_fc2)

    #日志输出,每迭代100次输出一次日志
    #定义交叉熵为损失函数
    with tf.name_scope("loss"):
        cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    tf.summary.scalar("loss",cross_entropy)
    with tf.name_scope("train"):
        #最小化交叉熵
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    with tf.name_scope("accuracy"):
        with tf.name_scope("correction_prediction"):
            #计算准确率
            correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
        with tf.name_scope("accuracy"):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
            tf.summary.scalar("accuracy",accuracy)
    sess = tf.Session()

   #合并所有的summary
    merged = tf.summary.merge_all()
    #写到指定的磁盘路径中
    train_writer = tf.summary.FileWriter(log_dir+"/train",sess.graph)
    test_writer = tf.summary.FileWriter(log_dir+"/test")
    #初始化变量
    sess.run(tf.initialize_all_variables())
    # 下载minist的手写数字的数据集
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    for i in range(2000):
        batch = mnist.train.next_batch(50)
        if i % 500 == 0:
            run_metadata = tf.RunMetadata()
            summary,_ = sess.run([merged,train_step],feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0},
                                 run_metadata=run_metadata)
            train_writer.add_run_metadata(run_metadata,"step%03d"%i)
            train_writer.add_summary(summary,i)

            #记录测试集的summary
            batch_test = mnist.test.next_batch(50)
            summary,acc = sess.run([merged,accuracy],feed_dict={x: batch_test[0], y_: batch_test[1], keep_prob: 1.0})
            test_writer.add_summary(summary,i)
            print("test Accuracy at step %s:%s"%(i,acc))
        else:
            summary,_ = sess.run([merged,train_step],feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0})
            train_writer.add_summary(summary,i)
    train_writer.close()
    test_writer.close()
    print("test accuracy %g" % accuracy.eval(session=sess,feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

1、启动tensorboard

在cmd中运行,以下命令

tensorboard -logdir=D:\python_workspace\machine_learn\com\xiulian\tensorflow\log

启动成功之后会出现以下界面,用浏览器访问下面这个网站即可。

2、损失函数和准确率的变化

3、权重和偏置的最大最小值的变化

4、卷积的可视化

输入的图片

第一层卷积

第二层卷积

注意:在使用反卷积的时候是无法完全复原卷积之前的图片的。在对第二层卷积进行反卷积的时候,需要进行两次反卷积才可以转换为如输入图片的尺寸相同的图片。

四、可能遇到的问题

在使用tensorboard的过程中可能会遇到一些错误,下面将会列举一些,并提供相应的解决方法。在进行反卷积的时候特别容易出错,这里需要特别注意一下。

1、tensorboard启动成功之后,提示no dashboard

检查logdir的路径是否正确,路径中不能含中文、空格等字符。

2、Conv2DSlowBackpropInput: input and out_backprop must have the same batch sizeinput batch: 1outbackprop batch: 50 batch_dim: 0

检查tf.nn.conv2d_transpose函数output_shape参数中的batch是否与训练和测试的batch是否相同,可以根据后面的提示修改就行。这里提示50 batch_dim 0,修改为50就好了。

3、input channels does not match filter's input channels, 64 != 32

检查tf.nn.conv2d_transpose函数的卷积核shape和output_shape的参数,特别注意卷积核中output_channels和input_channels的顺序。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修炼之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值