条件概率公式图解推导

废话不多,先上条件概率公式:
众所周知由 P ( A B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(AB)=P(A|B)P(B)=P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A)
得出
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B)= \frac{P(A)P(B|A)}{P(B)} P(AB)=P(B)P(A)P(BA)
原来一直不理解 P ( A B ) = P ( A ∣ B ) P ( B ) P(AB)=P(A|B)P(B) P(AB)=P(AB)P(B)这一步怎么来的。
现在以图举例:
这里写图片描述
如上图,假设有一个样本空间S,里面分别包括子样本空间A和子样本空间B,C是两个样本空间的交集。
先说P(AB),指得是A和B同时发生的概率,相对于整个S样本空间来说, P ( C ) = P ( A B ) S P(C)=\frac{P(AB)}{S} P(C)=SP(AB),
P©就是在整个S样本空间下P(AB)发生的概率。
关键点,P(A|B)指的是在B条件下A发生的概率。假设S样本空间为1,B在S样本空间占比为P(B)= 4 10 \frac{4}{10} 104,而 C C C在B样本空间的占比,也就是B条件下A发生的概率,记着小 P ( c 1 ) P(c_1) P(c1) 1 6 \frac{1}{6} 61。那么C在整个S样本空间的占比就是 1 6 ∗ 4 10 \frac{1}{6}*\frac{4}{10} 61104。即 P ( C ) = P ( c 1 ) ∗ P ( B ) = P ( A ∣ B ) ∗ P ( B ) P(C)=P(c_1)*P(B)=P(A|B)*P(B) P(C)=P(c1)P(B)=P(AB)P(B)

对于整个样本空间来说 P ( C ) = P ( A B ) P(C)=P(AB) P(C)=P(AB),并且 P ( C ) = P ( A ∣ B ) ∗ P ( B ) P(C)=P(A|B)*P(B) P(C)=P(AB)P(B)
那么: P ( A B ) = P ( A ∣ B ) P ( B ) P(AB)=P(A|B)P(B) P(AB)=P(AB)P(B)

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平原2018

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值