Affinity propagation
其中两点相似度s(i, j)的度量默认采用负欧氏距离。
sklearn.cluster.AffinityPropagation
有参数preference(设定每一个点的偏好,将偏好于跟其他节点的相似性进行比较,选择
高的作为exmplar,未设定则使用所有相似性的中位数)、damping (阻尼系数,
利用阻尼系数与1-阻尼系数对r 及 a进行有关迭代步数的凸组合,使得算法收敛
default 0.5 可以取值与[0.5, 1))
其中两点相似度s(i, j)的度量默认采用负欧氏距离。
sklearn.cluster.AffinityPropagation
有参数preference(设定每一个点的偏好,将偏好于跟其他节点的相似性进行比较,选择
高的作为exmplar,未设定则使用所有相似性的中位数)、damping (阻尼系数,
利用阻尼系数与1-阻尼系数对r 及 a进行有关迭代步数的凸组合,使得算法收敛
default 0.5 可以取值与[0.5, 1))
cluster_centers_indices_:中心样本的指标。
利用条件熵定义的同质性度量:
sklearn.metrics.homogeneity_score:每一个聚出的类仅包含一个类别的程度度量。
sklearn.metrics.completeness:每一个类别被指向相同聚出的类的程度度量。
sklearn.metrics.v_measure_score:上面两者的一种折衷:
v = 2 * (homogeneity * completeness) / (homogeneity + completeness)
可以作为聚类结果的一种度量。
sklearn.metrics.adjusted_rand_score:调整兰德系数。
sklearn.metrics.adjusted_mutual_info_score:调整互信息。
sklearn.metrics.silhouette_score:
对于一个样本点(b - a)/max(a, b)
a平均类内距离,b样本点到与其最近的非此类的距离。
silihouette_score返回的是所有样本的该值。
这些度量均是越大越好(类似于判别)
sklearn.metrics.homogeneity_score:每一个聚出的类仅包含一个类别的程度度量。
sklearn.metrics.completeness:每一个类别被指向相同聚出的类的程度度量。
sklearn.metrics.v_measure_score:上面两者的一种折衷:
v = 2 * (homogeneity * completeness) / (homogeneity + completeness)
可以作为聚类结果的一种度量。
sklearn.metrics.adjusted_rand_score:调整兰德系数。
sklearn.metrics.adjusted_mutual_info_score:调整互信息。
sklearn.metrics.silhouette_score:
对于一个样本点(b - a)/max(a, b)
a平均类内距离,b样本点到与其最近的非此类的距离。
silihouette_score返回的是所有样本的该值。
这些度量均是越大越好(类似于判别)
下面是例子:
from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples = 300, centers = centers, cluster_std = 0.5, random_state = 0)
af = AffinityPropagation(preference = -50).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
n_clusters_ = len(cluster_centers_indices)
print "Estimated number of clusters: %d" % n_clusters_
print "Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)
print "Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)
print "V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)
print "Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)
print "Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)
print "Silhouette Coefficiet: %0.3f" % metrics.silhouette_score(X, labels, metric = 'sqeuclidean')
import matplotlib.pyplot as plt
from itertools import cycle
plt.close('all')
plt.figure(1)
plt.clf()
colors = cycle('bgrcmyk')
for k, col in zip(range(n_clusters_), colors):
class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor = col, \
markeredgecolor = 'k', markersize = 14)
for x in X[class_members]:
plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()