聚类算法:Affinity Propogation算法学习指南!

Affinity Propogation最初是由Brendan Frey 和 Delbert Dueck于2007年在Science上提出的。相比其它的聚类算法,Affinity Propogation算法不需要预先指定聚类个数。

Affinity Propogation算法的原理可以简单的概括为:每一个数据点都会给其它的多有点发送信息,告知其它所有点每个目标对发送者(sender)的相对吸引力的目标值(target)。

随后,鉴于从所有其它sender收到信息的“attractiveness”,每个target所有sender一个回复,以告知与sender相联系的每一个sender的可用性。sender会给target回复相关信息,以告知每一个target对sender修正的相对“attractiveness”(基于从所有target收到的关于可用性的信息)。信息传递的整个过程直到达成一致才会停止。

一旦sender与某个target相联系,这个target就会称为该点(sender)的“典型代表(exemplar)”。所有被相同exemplar标记的点都被放置在一个聚类中。

算法

假定一个如下的数据集。每一个参与者代表一个五维空间的数据点。

相似性矩阵(C)

除了在对角线上的元素外,其它的元素是负的均方误差作为两个数据间的相似值。计算公式如下:
c ( i , j ) = − ∣ ∣ X i − X y ∣ ∣ 2 c(i, j) = -||X_i-X_y||^2 c(i,j)=XiXy2
以Alice和Bob为例,两者间的相似性计算过程如下:
( 3 − 4 ) 2 + ( 4 − 3 ) 2 + ( 3 − 5 ) 2 + ( 2 − 1 ) 2 + ( 1 − 1 ) 2 = 7 (3-4)^2+(4-3)^2+(3-5)^2+(2-1)^2+(1-1)^2 = 7 (34)2+(43)2+(35)2+(21)2+(11)2=7
因此,Alice与Bob之间的相似值为-7。

相似性值的计算边界出现在Bob和Edna间:
( 4 − 1 ) 2 + ( 3 − 1 ) 2 + ( 5 − 3 ) 2 + ( 1 − 2 ) 2 + ( 1 − 3 ) 2 = 22 (4-1)^2+(3-1)^2+(5-3)^2+(1-2)^2+(1-3)^2 = 22 (41)2+(31)2+(53)2+(12)2+(13)2=22
Bob和Edna之间的相似值为-22。

通过逐步的计算,最后得到的结果如下:

在这里插入图片描述

一般对角线上的元素取相似值中较小的数,在本例中取值为-22,因此,得到的相似性矩阵如下:

在这里插入图片描述

Responsibility Matrix ®

这里的responsibility matrix 是中间的过度步骤。通过使用如下的公式计算responsibility matrix:
r ( i , k ) ← s ( i , k ) − m a x k ′ s u c h   t h a t   k ′ ≠   k { a ( i , k ′ ) + s ( i , k ′ ) } , r(i, k ) \leftarrow s(i, k)- max_{k^{'} such\ that\ k^{'} \not= \ k} \{a(i, k^{'})+s(i, k^{'})\}, r(i,k)s(i,k)maxksuch that k= k{a(i,k)+s(i,k)},
其中,i表示协同矩阵的行,k表示列的关联矩阵。

例如, r ( A l i c e , B o b ) r(Alice, Bob) r(Alice,Bob)的值为-1, 首先提取similarity matrix中 c ( A l i c e , B o b ) c(Alice, Bob) c(Alice,Bob)的值为-7, 减去similarity matrix中Alice行的最大值为-6,因此,得到 r ( A l i c e , B o b ) = − 1 r(Alice, Bob)=-1 r(Alice,Bob)=1

取值的边界为 r ( C a r y , D o u g ) r(Cary, Doug) r(Cary,Doug),其计算如下:

在这里插入图片描述
r ( C a r y , D o u g ) = − 18 − ( − 6 ) = − 12 r(Cary, Doug) = -18-(-6)=-12 r(Cary,Doug)=18(6)=12

根据上述公式计算得到的最终结果如下图所示:

在这里插入图片描述

Availability Matrix (a)

Availability Matrix的初始值为矩阵中的所有元素均为0。

首先,计算对角线上的元素值:
a ( k , k ) ← ∑ i ′ s u c h   t h a t   i ′ ≠ k m a x { 0 , r { i ′ , k } } , a(k,k) \leftarrow \sum_{i^{'}such \ that \ i^{'} \not= k} max\{0, r\{i^{'}, k\}\}, a(k,k)isuch that i=kmax{0,r{i,k}},
其中,i表示协同矩阵的行,k表示协同矩阵的列。

实际上,上面的公式只告诉你沿着列,计算所有行与0比较的最大值(除列序与行序相等时的情况除外)。例如, a ( A l i c e , A l i c e ) a(Alice, Alice) a(Alice,Alice)的计算如下:
a ( A l i c e , A l i c e ) = 10 + 11 + 0 + 0 = 21 a(Alice, Alice) = 10+11+0+0 = 21 a(Alice,Alice)=10+11+0+0=21
其次,计算非对角线上的元素值,分别以 a ( A l i c e , C a r y ) a(Alice, Cary) a(Alice,Cary) a ( D o u g , E d n a ) a(Doug, Edna) a(Doug,Edna)为例,其计算过程如下所示:

在这里插入图片描述
a ( A l i c e , C a r y ) = 1 + 0 + 0 + 0 = 1 a ( D o u g , E d n a ) = 0 + 0 + 0 + 9 = 9 a(Alice, Cary) = 1+0+0+0 = 1 \\ a(Doug, Edna) = 0+0+0+9 = 9 a(Alice,Cary)=1+0+0+0=1a(Doug,Edna)=0+0+0+9=9
以下公式是用于更新Availability Matrix,其公式如下:
a ( i , k ) ← m i n { 0 , r ( k , k ) + ∑ i ′ s u c h   t h a t   i ′ ∉ { i , k } m a x { 0 , r ( i ′ , k ) } } a(i, k) \leftarrow min\{0, r(k,k)+\sum_{i^{'} such \ that \ i^{'} \notin \{i, k\}} max{\{0, r(i^{'}, k)}\}\} a(i,k)min{0,r(k,k)+isuch that i/{i,k}max{0,r(i,k)}}
当你想要更新 a ( A l i c e , B o b ) a(Alice, Bob) a(Alice,Bob)的值时,其计算过程如下:
a ( D o u g , B o b ) = m i n { 0 , ( − 15 ) + 0 + 0 + 0 } = − 15 a(Doug, Bob) = min\{{0,(-15)+0+0+0}\}=-15 a(Doug,Bob)=min{0,(15)+0+0+0}=15
最后得到的结果如下表所示:

在这里插入图片描述

Criterion Matrix ©

在得到上面的availability matrix后,将availability matrix和responsibility matrix的对应元素相加,便可得到criterion matrix。

其计算公式如下:
c ( i , k ) ← r ( i , k ) + a ( i , k ) . c(i, k) \leftarrow r(i,k)+a(i,k). c(i,k)r(i,k)+a(i,k).
最后得到的criterion matrix的结果如下:

在这里插入图片描述

以上便是Affinity Propogation算法的计算过程,这是我见过最浅显易懂的讲解了,详见原文

代码示例如下:

首先,导入相关库:

import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import AffinityPropagation

使用scikit-learn生成需要的数据集,详见如下:

X, clusters = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)
plt.scatter(X[:,0], X[:,1], alpha=0.7, edgecolors='b') 

在这里插入图片描述

训练模型(因为是无监督算法,因此不需要拆分训练集和测试集):

af = AffinityPropagation(preference=-50)
clustering = af.fit(X) 

最后,将不同聚类的点可视化:

plt.scatter(X[:,0], X[:,1], 
c=clustering.labels_, cmap='rainbow', alpha=0.7, 
edgecolors='b') 

算法使用场景:

Affinity Propagation是一个无监督的机器学习算法,它尤其适用于那些不知道最佳聚类数情况的算法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值