[NLP论文阅读]LightRNN: Memory and Computation-Efficient Recurrent Neural Networks

原文链接:LightRNN: Memory and Computation-Efficient Recurrent Neural Networks

引言

RNN已经在多个自然语言处理任务中取得了最先进的表现,例如语言建模和机器翻译。然而,随着词表大小的变大,RNN模型会变得很大(可能会超出GPU设备的内存)并且RNN模型的训练会变得不高效。在本工作中,我们提出了一种解决这一问题的新方法。核心思想是使用一个2-Component(2C) shared embedding(二部共享嵌入)来进行词表示。我们词表中的每个单词都分配到一个表中,表格的每一行和一个行向量关联,每一列和一个列向量关联。那么一个单词可以根据自己在表格中的位置,由2个component表示,即一个行向量和一个列向量。同一行的所有单词共享一个行向量,同一列的所有单词共享一个列向量,因此表示一个有|V|个不同词汇的词表只需要2 |V| 个向量,这比现有的方法少了很多。基于2-Component(2C) shared embedding,我们设计了一个新的RNN算法并且在语言建模任务上进行了评估。实验结果表明,我们的算法在不牺牲精度的情况下,显著降低了模型的规模的并加速了训练过程。

LightRNN模型

LightRNN算法的一个关键技术创新就是2-Component(2C) shared embedding。
如下图所示:
二部共享嵌入举例
我们把每一个单词都分配进一个单词表中,表格中的第i行对应的行向量为 xri ,第j列对应的列向量为 xcj 。那么表格中第i行第j列的单词就可以被表示为两部分: xri xcj 。对于输出词向量,也是一样的情况。也就是说这里有输入和输出两套词向量。
LightRNN的具体结构如下:
LightRNN结构
有了2-Component(2C) shared embedding,我们可以通过将vanilla RNN(不知道怎么翻译好)模型的基本单元加倍的方法来构建LightRNN模型。使用n和m来表示行/列输入向量以及隐藏状态向量的维数。为了计算出 wt 的概率分布,我们需要使用列向量 xct1ϵRn ,行向量 xrtϵRn 以及隐藏状态向量 hct1ϵRm 。列向量和行向量是通过输入向量矩阵 Xc,XrϵRn×|V| 获得,隐藏状态 hct1,hrtϵRm 的计算方式如下:
隐藏状态h计算公式
其中,f是非线性的激活函数,例如sigmoid函数。
模型的输入是从行向量矩阵 Xr 和列向量矩阵 Xc 中找到单词 wt1 对应行列向量 xrt1 xct1 作为输入。要计算下一个词是 wt 的概率,先根据前文计算下一个词的行向量是 wrt 的概率分布,在根据前文和 wrt 的概率分布中最大值索引对应的行向量 xrr(wt1) 来计算下一个词的列向量是 xcc(wt1) 的概率,行向量和列向量的概率乘积就是下一个词是 wt 的概率。
行列向量概率分布计算公式

损失函数

语言模型的目标是最小化预测词的负对数似然函数,这就相当于优化目标概率分布和LightRNN模型的预测的交叉熵(cross-entropy)。
给定一个有T个单词的文本,负对数似然函数可以写成:

NLL=t=1TlogP(wt)=t=1Tlog(Pr(wt)Pc(wt))

NLL=w=i|V|NLLw

NNLw 是对于单词w的负对数似然。
这里写图片描述
Sw 是单词w在语料库中所有位置的集合;
lr lc 分别被称为行损失和列损失。

模型训练

训练主要分为三步:
1. 冷启动(cold start),随机初始化单词在表格中位置;
2. 固定单词在表格中位置,训练LightRNN的输入/输出embedding vectors。收敛条件可以是训练时间、语言模型的困惑度(perplexity)达到阈值等等。
3. 固定步骤2学习到的embedding vectors,通过调整单词在表格中的位置来最小化损失函数。接着重复步骤2。

在步骤3中调整单词位置以减小的损失函数的方法,文章中使用的是最小费用最大流算法(MCMF),对于该方法不是很了解,只读懂了文中对该方法举得例子:
这里写图片描述
上图b中, w1,w2,w3,w4 的原始位置分别是11,12,21,22,在这种情况下,运用MCMF算法将位置调整为21,11,12,22可以使得损失函数降低。

实验结果

论文中展示一张训练好的词表,展示出来的结果很有意思(但感觉是经过人工挑选出比较好结果)
这里写图片描述

最后

文中提到了一些future work:
1. 将LightRNN应用到更大的语料库;
2. 包括词的表示不再局限于2-Component(2C) shared embedding,将要去研究k-Component shared embedding;
3. 将LightRNN应用到其他自然语言处理任务,例如机器翻译和问答。

文末提到,作者会在未来对代码进行开源,然而。。。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
complex-valued neural networks: theories and applications》是一本介绍复数值神经网络理论和应用的电子书。该书首先介绍了复数值神经网络的基本概念和数学原理,包括复数的表示、运算规则和复数神经元的构建。然后详细阐述了复数值神经网络在信号处理、图像识别、自然语言处理等领域的应用,以及与实数值神经网络在性能上的比较和分析。 在理论方面,该书深入解释了复数值神经网络相较于实数值神经网络的优势和特点,如对非平稳信号的处理能力、对相位信息的敏感度等。同时,还介绍了复数值神经网络在频域特征提取、相位编码和解调等方面的重要性,以及复数值神经网络在复杂环境下的稳定性和鲁棒性。 在应用方面,该书涵盖了复数值神经网络在通信系统中的调制解调、自适应滤波和信道均衡等方面的应用,以及在图像处理中的相位提取、变换和压缩等应用,同时还介绍了复数值神经网络在自然语言处理中的词向量表示、语义分析和情感识别等应用。 总之,《complex-valued neural networks: theories and applications》是一本系统全面地介绍了复数值神经网络的理论和应用的电子书。这本书对于研究人员、工程师和学生都有很高的参考价值,可以帮助他们深入理解复数值神经网络的原理和方法,并且在实际应用中发挥其优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值