Opencv实现Harris角点检测

在图像处理和计算机视觉领域,兴趣点(interest points),或称做关键点(keypoints)、特征点(feature points)被大量用于解决物体识别,图像识别、图像匹配、视觉跟踪、三维重建等一系列问题。我们不再观察整幅图,而是选择某些特殊的点,然后对它们进行局部有的放矢的分析。如果能检测到足够多的点,同时它们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就有使用价值。

关于角点的具体描述可以有几种:

  • 一阶导数(即灰度的梯度)的局部最大所对应的像素点;
  • 两条及两条以上边缘的交点;
  • 图像中梯度值和梯度方向的变化速率都很高的点;
  • 角点处的一阶导数最大,二阶导数为零,指示物体边缘变化不连续的方向。

 具体的算法推导请看我的上一篇博客:https://blog.csdn.net/sinat_31608641/article/details/102863996

OpenCV主要使用cornerHarris函数。其函数原型和参数解析:

C++: void cornerHarris(InputArray src,OutputArray dst, int blockSize, int ksize, double k, intborderType=BORDER_DEFAULT )

第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可,且需为单通道8位或者浮点型图像。
第二个参数,OutputArray类型的dst,函数调用后的运算结果存在这里,即这个参数用于存放Harris角点检测的输出结果,和源图片有一样的尺寸和类型。
第三个参数,int类型的blockSize,表示邻域的大小,更多的详细信息在cornerEigenValsAndVecs()中有讲到。
第四个参数,int类型的ksize,表示Sobel()算子的孔径大小。
第五个参数,double类型的k,Harris参数。
第六个参数,int类型的borderType,图像像素的边界模式,注意它有默认值BORDER_DEFAULT。更详细的解释,参考borderInterpolate( )函数。

Threshold函数详解

C++: double threshold(InputArray src,OutputArray dst, double thresh, double maxval, int type)

第一个参数,InputArray类型的src,输入数组,填单通道 , 8或32位浮点类型的Mat即可。
第二个参数,OutputArray类型的dst,函数调用后的运算结果存在这里,即这个参数用于存放输出结果,且和第一个参数中的Mat变量有一样的尺寸和类型。
第三个参数,double类型的thresh,阈值的具体值。
第四个参数,double类型的maxval,当第五个参数阈值类型type取 CV_THRESH_BINARY 或CV_THRESH_BINARY_INV 阈值类型时的最大值.
第五个参数,int类型的type,阈值类型,。threshold( )函数支持的对图像取阈值的方法由其确定
 

//----------------------------------------------------------------------------------------------   
#include <opencv2/opencv.hpp>  
#include <opencv2/imgproc/imgproc.hpp>  
 

//      描述:包含程序所使用的命名空间  
//-----------------------------------------------------------------------------------------------   
using namespace cv;  
 
int main()  
{  
	//以灰度模式载入图像并显示
	Mat srcImage = imread("1.jpg", 0);  
	imshow("原始图", srcImage);  
 
	//进行Harris角点检测找出角点
	Mat cornerStrength;  
	cornerHarris(srcImage, cornerStrength, 2, 3, 0.01);
 
	//对灰度图进行阈值操作,得到二值图并显示  
	Mat harrisCorner;  
	threshold(cornerStrength, harrisCorner, 0.00001, 255, THRESH_BINARY);  
	imshow("角点检测后的二值效果图", harrisCorner);  
 
	waitKey(0);  
	return 0;  
}

运行截图:

python的实现方式

import cv2
import numpy as np

# 读入图像并转化为float类型,用于传递给harris函数
filename = '1class.ppm'

img = cv2.imread(filename)

gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

gray_img = np.float32(gray_img)

# 对图像执行harris
Harris_detector = cv2.cornerHarris(gray_img, 2, 3, 0.04)

# 腐蚀harris结果
dst = cv2.dilate(Harris_detector, None)

# 设置阈值
thres = 0.01 * dst.max()

img[dst > thres] = [255, 0, 0]

cv2.imshow('show', img)

cv2.waitKey()

参考:

https://blog.csdn.net/poem_qianmo/article/details/29356187

https://blog.csdn.net/xiaowei_cqu/article/details/7805206

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值