Tensorflow实现多层感知器

import tensorflow as tf

# 导入数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("data/mnist", one_hot=True)

# 定义参数:学习率;迭代次数;批处理个数;显示步长
learning_rate = 0.01
iterations = 15
batch_number = 100
display_step = 1

# 定义输入输出矩阵大小
X = tf.placeholder("float", [None, 784])  # 28*28
Y = tf.placeholder("float", [None, 10])  # 10 labels  : 0-9

# 定义隐藏层大小
hidden_one = 256
hidden_two = 256

# 定义多重感知机函数,需要输入参数X,权重weights,偏置biases
# 这里的weights和biases是python中一个字典, dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}
# dict['Alice']=2341
def multilayer_perceptron(x, weights, biases):
    hidden_layer_one = tf.matmul(x, weights["W_layer_one"]) + biases["b_layer_one"]
    
    # tf.nn.relu()属于激活函数,几种常见的激活函数如下:
    # Sigmoid(S 型激活函数):输入一个实值,输出一个 0 至 1 间的值 σ(x) = 1 / (1 + exp(-x))
    # tanh(双曲正切函数):输入一个实值,输出一个 [-1,1] 间的值 tanh(x) = 2σ(2x)-1
    # ReLU:ReLU 代表修正线性单元。输出一个实值,并设定 0 的阈值(函数会将负值变为零)f(x) = max(0, x)
    hidden_layer_one = tf.nn.relu(hidden_layer_one)
    hidden_layer_two = tf.matmul(hidden_layer_one, weights["W_layer_two"]) + biases["b_layer_two"]
    hidden_layer_two = tf.nn.relu(hidden_layer_two)
    
    # 返回隐藏层2的输出,也就是输出层的输入,这里不需要求最后的输出,只需返回没有经过激活函数的输入,后面会讲原因
    out_layer = tf.matmul(hidden_layer_two, weights["W_out_layer"]) + biases["b_out_layer"]
    return out_layer


# tf.random_normal():随机生成均值为0,标准差为1的数值
weights = {"W_layer_one":tf.Variable(tf.random_normal([784, hidden_one])),
         "W_layer_two":tf.Variable(tf.random_normal([hidden_one, hidden_two])),
         "W_out_layer":tf.Variable(tf.random_normal([hidden_two, 10]))   
    }
biases = {"b_layer_one":tf.Variable(tf.random_normal([hidden_one])),
        "b_layer_two":tf.Variable(tf.random_normal([hidden_two])),
        "b_out_layer":tf.Variable(tf.random_normal([10]))  
    } 

# 调用多重感知机函数
pred = multilayer_perceptron(X, weights, biases)

# tf.nn.softmax_cross_entropy_with_logits(): 
# http://www.jianshu.com/p/fb119d0ff6a6(对这个函数的说明)
# 这个函数可以利用softmax函数对输入进行映射,并求出与真实值之间的交叉熵
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=pred))

# 另外一种优化函数,在这个算法中比梯度下降优化更快
optimizer=tf.train.AdamOptimizer(learning_rate).minimize(cost)

# 初始化参数
init = tf.global_variables_initializer()   
sess = tf.Session()
sess.run(init)

for iteration in range(iterations):
    
    # 初始训练误差,计算每轮批量迭代次数
    train_cost=0
    batch_times=int(mnist.train._num_examples/batch_number)
    
    for i in range(batch_times):
       
        # 每次取100张图
        batch_X,batch_Y=mnist.train.next_batch(batch_number)
        
        # 运行优化函数
        # 这里返回一个[optimizer,cost]的list, 其中 _代表optimizer,batch_cost代表cost的值
        _,batch_cost=sess.run([optimizer,cost],feed_dict={X:batch_X,Y:batch_Y})
        
        # 返回训练集误差:每次计算100张图的batch_cost,计算了i次,所以最后除以batch_numbers
        train_cost+=batch_cost/batch_times
        
    if iteration % display_step==0:
        
        # %04d: % 转义说明符 ; 0 指以0填充前面的位数 ;4 四位数; d 十进制整数
        # "{:.9f}".format(train_cost)  以保留小数点后9位显示train_cost
        print("Iteration :","%04d"%(iteration+1),"Train_cost :","{:.9f}".format(train_cost))
 
# tf.arg_max(pred,1):得到向量中最大数的下标,1代表水平方向
# tf.equal():返回布尔值,相等返回1,否则0
# 最后返回大小[none,1]的向量,1所在位置为布尔类型数据       
prediction=tf.equal(tf.arg_max(pred, 1), tf.arg_max(Y,1))    

# tf.cast():将布尔型向量转换成浮点型向量
# tf.reduce_mean():求所有数的均值
# 返回正确率:也就是所有为1的数目占所有数目的比例
accuracy=tf.reduce_mean(tf.cast(prediction,"float"))

# 打印正确率
print("Train_cost :",sess.run(accuracy,feed_dict={X:mnist.train.images,Y:mnist.train.labels}))
print("Test_cost :",sess.run(accuracy,feed_dict={X:mnist.test.images,Y:mnist.test.labels}))


# 打印结果
# Iteration : 0001 Train_cost : 53.053542605
# Iteration : 0002 Train_cost : 8.394692302
# Iteration : 0003 Train_cost : 4.178018635
# Iteration : 0004 Train_cost : 2.850156586
# Iteration : 0005 Train_cost : 2.115638643
# Iteration : 0006 Train_cost : 2.068853149
# Iteration : 0007 Train_cost : 1.676146167
# Iteration : 0008 Train_cost : 1.487952944
# Iteration : 0009 Train_cost : 1.493097927
# Iteration : 0010 Train_cost : 1.245084499
# Iteration : 0011 Train_cost : 1.224542024
# Iteration : 0012 Train_cost : 0.930452932
# Iteration : 0013 Train_cost : 0.838671544
# Iteration : 0014 Train_cost : 0.777738831
# Iteration : 0015 Train_cost : 0.635424245
# Train_cost : 0.984127
# Test_cost : 0.9646

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是实现多层感知器识别手写数字的 TensorFlow 代码: ```python import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 加载MNIST数据集 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 定义超参数 learning_rate = 0.01 num_steps = 1000 batch_size = 128 display_step = 100 # 定义网络参数 n_hidden_1 = 256 # 第一层隐藏层神经元个数 n_hidden_2 = 256 # 第二层隐藏层神经元个数 num_input = 784 # MNIST数据集每张图片的像素个数(28*28) num_classes = 10 # MNIST数据集的类别个数(0-9) # 定义输入输出占位符 X = tf.placeholder("float", [None, num_input]) Y = tf.placeholder("float", [None, num_classes]) # 定义权重和偏置变量 weights = { 'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([num_classes])) } # 定义多层感知器网络模型 def neural_net(x): layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] return out_layer # 构建模型 logits = neural_net(X) # 定义损失函数和优化器 loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=Y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss_op) # 定义评估模型的准确率 correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 初始化变量 init = tf.global_variables_initializer() # 开始训练模型 with tf.Session() as sess: sess.run(init) for step in range(1, num_steps+1): batch_x, batch_y = mnist.train.next_batch(batch_size) sess.run(train_op, feed_dict={X: batch_x, Y: batch_y}) if step % display_step == 0 or step == 1: # 计算损失函数和准确率,并输出 loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x, Y: batch_y}) print("Step " + str(step) + ", Minibatch Loss= " + \ "{:.4f}".format(loss) + ", Training Accuracy= " + \ "{:.3f}".format(acc)) print("Optimization Finished!") # 计算测试集准确率 print("Testing Accuracy:", \ sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels})) ``` 这段代码使用了 TensorFlow 中的 `tf.layers` API 来构建多层感知器网络模型,使用交叉熵损失函数和 Adam 优化器进行训练,最后计算模型在测试集上的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值