*大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。关注AI拉呱一起学习更多AI知识。
一、引言
互联网技术飞速发展,恶意代码的威胁也与日俱增。像僵尸网络、勒索软件这类恶意代码,借助网络通信达成其恶意目的,给网络安全带来了巨大挑战。传统的检测方法,如基于主机行为和静态特征的检测,已经难以应对恶意代码不断变化的情况。因此,本文提出了一种基于网络流量特征的检测方法,为恶意代码的识别提供了新的思路。
二、核心技术特征
(一)网络流特征集
-
时间相关特征
- 流持续时间:指网络流从开始到结束的时间差。恶意代码的网络流持续时间通常较短且集中,比如Zeus僵尸网络的流持续时间大多在特定区间内,而正常网络流量的持续时间则较为分散。
- 数据包到达时间间隔:包括前向和后向数据包的最大、最小、平均时间间隔以及标准差。恶意代码如Gh0st木马会周期性发送心跳包,其数据包到达时间间隔的标准差较小,平均值也较为固定。
-
数据统计特征
- 数据包大小:涵盖前向和后向数据包的最大、最小、平均大小以及标准差。恶意代码产生的数据包大小分布相对集中,例如Zeus僵尸网络的数据包大小分布就