- 博客(34)
- 收藏
- 关注
原创 LlamaFirewall大模型防火墙框架
Meta公司正式发布开源框架LlamaFirewall,该框架旨在保护人工智能(A)系统免受即时注入(promptinjection)、越狱攻击(iailbreak)及不安全代码等新兴网络安全威胁。LlamaFirewall包含三大核心防护组件:PromptGuard2、Agent Alignment Checks和CodeShield,分别负责实时监测攻击尝试、监控AI代理的推理过程以及阻止不安全代码的生成。
2025-05-07 16:37:31
1081
原创 论文《AVScan2Vec: 恶意软件转成向量》解读
大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。
2025-05-07 16:36:22
817
原创 医院行业等保2.0案例
随着“互联网 + 医疗”的兴起,内外网业务互联互通已成为医院业务发展的趋势,互联网出口成为整个医院网络的关键节点,需要加强互联网边界安全防护,对互联网出口链路、边界防护、入侵防范、流量管理、日志审计等进行安全加固。对医院的网络情况进行梳理,根据不同业务系统的安全需求对网络初步划分安全区域,构建安全边界,保护 HIS、LIS、PACS 等业务系统的安全。部署终端检测响应系统(EDR),以资产为中心,对主机安全精准、持续的检测,并通过联动协同响应快速处置终端资产安全问题,构建终端检测响应平台。
2025-04-24 09:26:23
249
原创 探索勒索软件检测新技术:基于动态行为特征与图神经网络
本文提出的基于Cuckoo沙箱报告的异构图构建技术,能更好地表示勒索软件复杂行为模式。基于异构图注意力机制和图卷积网络的检测技术,分别从利用边语义信息和解决模型缺陷方面,有效提升了勒索软件检测性能。未来,研究者计划采用混合分析方法,结合静态和动态分析优势,同时收集更多勒索软件样本实现多分类,进一步提升检测技术的性能和鲁棒性。在这场与勒索软件的“战争”中,研究者们不断探索创新,这些技术成果为网络安全防护提供了有力武器。但勒索软件也在不断进化,我们需要持续关注研究进展,共同守护网络安全。
2025-04-24 09:22:10
1095
原创 深度剖析勒索软件检测技术:基于行为特征的创新之路
大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。在网络安全领域,勒索软件一直是令人头疼的难题,它就像隐藏在暗处的“数字劫匪”,给个人和组织带来巨大损失。今天,我们就通过《基于行为特征的勒索软件分析与检测》这篇论文,深入了解如何从行为特征入手,有效检测和防范勒索软件。
2025-04-23 18:52:18
716
原创 ATT&CK的核心组件定义
含义:一般为网络流量中或者操作系统上观察到的能高度表明计算机被入侵的痕迹.将这些特征收集整理为库,下次再表现如此特征就确定计算机已经被入侵了.
2025-04-23 18:50:36
937
原创 深度剖析transformer算法
知晓了attention为循环神经网络带来的优点。那么有没有一种神经网络结构直接基于attention构造,并且不再依赖RNN、LSTM或者CNN网络结构了呢?答案便是:Transformer。因此,我们将在本小节对Transformer所涉及的细节进行深入探讨。
2025-04-21 11:35:22
1020
原创 Pytorch从0编写Transformer算法:源码和案例
到目前为止,我们逐行实现了一个完整的Transformer,并使用合成的数据对其进行了训练和预测,希望这个教程能对你有帮助。关注“AI拉呱公众号”一起学习更多AI知识!
2025-04-21 11:33:48
1185
原创 transformer算法剖析
seq2seq是一种常见的NLP模型结构,全称是:sequence to sequence,翻译为“序列到序列”。顾名思义:从一个文本序列得到一个新的文本序列。典型的任务有:机器翻译任务,文本摘要任务。对于编码器和解码器是seq2seq的关键,编码器是将文本转化为context向量,解码器将context转化为文本。
2025-04-18 09:48:24
1189
原创 如何在Gihub上面精准搜索开源项目?
好,我们来总结一下。我们想要进行精准搜索,无非就是增加筛选条件。in:name xxx // 按照项目名搜索in:readme xxx // 按照README搜索in:description xxx // 按照description搜索那么在这里面呢,我们又可以增加筛选条件stars:>xxx // stars数大于xxxforks:>3000 // forks数大于xxxlanguage:xxx // 编程语言是xxx。
2025-04-18 09:45:11
911
原创 AI Agent 概述与理论基础
AI Agent,也称为智能代理,是一种能够感知环境并在其中采取行动以实现特定目标的计算系统。自主性:能够独立做出决策和执行操作。反应性:能够感知环境并及时做出响应。主动性:能够主动采取行动以达成目标。社交能力:能够与其他Agent或人类进行交互和协作。
2025-04-17 16:43:00
1094
原创 基于Ollama 和 Open WebUI 部署 DeepSeek-R1
DeepSeek是目前推理效率最高的模型,私有化部署模型有助于企业将私有化的数据与LLM结合。解决具体的企业问题,提效研发。关注“AI拉呱公众号”一起学习更多AI知识!
2025-04-17 16:41:10
611
原创 生成式 AI 的发展方向,是 Chat 还是 Agent?
AI Agent是一种超越简单文本生成的人工智能系统。它使用大型语言模型(LLM)作为其核心计算引擎,使其能够进行对话、执行任务、推理并展现一定程度的自主性。简而言之,Agent是一个具有复杂推理能力、记忆和执行任务手段的系统。
2025-04-15 10:49:25
752
原创 网络安全:AI已经在自动的挖掘漏洞
LLM自动化渗透测试通过自然语言交互、智能工具调度和上下文感知,显著提升了渗透测试的效率和智能化水平。其核心机理在于将LLM的生成与推理能力与安全工具链深度结合,实现从指令生成到漏洞验证的全流程自动化。未来随着模型能力的增强和工具生态的完善,此类系统有望成为网络安全防御体系的重要组成。关注“AI拉呱公众号”一起学习更多AI知识!
2025-04-15 10:47:49
1005
原创 google的A2A协议解决Agent信息孤岛问题
• A2A 全名 Agent2Agent,是一个开放源代码的协议,让不同公司、不同底层技术的AI Agent能安全地相互交流,无论它们是基于GPT、Gemini还是Claude。• 举个例子:如果把MCP看作是智能体的"工具箱"(提供扳手、计算器等工具),那A2A就像是它们之间的"微信群聊"。技术特点:基于普通网络技术如HTTP、JSON-RPC等构建。
2025-04-14 09:24:16
947
原创 谷歌ADKagent框架以及MCP协议
回调是ADK的一个基础特性,它提供了一种强大的机制来连接代理的执行过程。它们允许您在特定的预定义点观察、自定义甚至控制代理的行为,而无需修改核心ADK框架代码。它们是什么?本质上,回调是您定义的标准Python函数。然后,在创建代理时将这些函数与代理相关联。ADK框架会在代理生命周期的关键阶段自动调用您的函数.为什么要使用它们?回调释放了显着的灵活性并启用了高级代理功能:观察和调试:记录监控和故障排除关键步骤的详细信息。
2025-04-14 09:21:14
869
原创 什么是知识蒸馏以及模型知识蒸馏案例解读
概念知识蒸馏(Knowledge Distillation)是一种机器学习中广泛认可且合法的技术,其核心在于通过让小型模型(学生模型)学习大型模型(教师模型)的“知识”,而非直接复制代码或参数。这一过程类似于学生向老师学习解题思路,而不是抄袭答案1。知识蒸馏可以分为离线、在线和自蒸馏三种方式,旨在保持或提高模型精度的同时降低计算成本和时延。知识蒸馏广泛用于深度学习领域,尤其在计算资源有限的场景(如移动端设备、嵌入式设备)中,用于加速推理、减少存储成本,同时尽可能保持模型性能。
2025-04-11 09:50:25
859
原创 DeepSeek深度剖析以及蒸馏原理案例实践
DeepSeek-V3 是一个大规模稀疏专家混合(MoE)模型,其参数规模高达 671B 个,其中每个 token 可激活 37B 个参数。该模型采用多头潜在注意力(MLA)机制,与 DeepSeek-V2 相比,显著提升了推理效率。此外,DeepSeek-V3 引入了一种无辅助损失的负载平衡策略,并设定了多 token 预测训练目标,以增强模型的鲁棒性与稳定性。DeepSeek-V3 的预训练阶段在不足两个月的时间内便得以完成,耗费 2664K GPU(H800 GPU)小时。
2025-04-11 09:46:09
1239
原创 什么是“模型坍塌“及如何解决“LLM模型坍塌“?
模型坍塌(Model Collapse)是深度学习和生成模型中常见的现象,指模型在训练过程中逐渐失去多样性和泛化能力,导致性能严重退化甚至无法继续优化。Bender等人(2021)强调,仅在合成数据上训练的模型可能会进入一个退化循环,生成缺乏新颖性和原创性的输出。这是因为这些模型越来越依赖自身的输出或类似系统的输出,导致对语言的理解趋于同质化且不够稳健。性能退化:训练过程中,模型的准确率下降、损失函数发散或过拟合。生成模型(如GAN)中,生成器可能仅输出单一或重复的结果(如所有样本趋同于某个模式)。
2025-04-11 09:44:20
533
原创 为什么RAG,如何RAG和怎么做RAG?
检索增强生成(RAG)是一种流行的技术,通过在生成答案之前从知识库中检索相关的外部知识来增强 LLM 的响应。RAG 提高了准确性,减少了幻觉,并使模型能够提供更符合上下文和更新的信息。RAG 包括三个步骤:检索、增强和生成。检索 -在此步骤中,系统会在外部知识源(例如向量数据库)中搜索相关信息,以基于用户查询找到相关的信息。增强 -检索到的信息随后与原始用户查询结合,形成 LLM 的提示。生成 -LLM 处理提示并生成响应,整合其预训练知识和检索到的信息。这使得响应更加准确且符合上下文。
2025-04-10 15:58:44
956
原创 LightRAG:简单快速的检索增强生成框架快速上手
你是环境科学专家,提供详细且结构化的回答,并包含示例。---对话历史---{history}---知识库------响应规则---目标格式和长度:{response_type}""" response_custom = rag . query("可再生能源的主要优势是什么?
2025-04-09 14:42:21
1076
原创 MarkItDown工具-将任意文件格式转成markdown格式
MarkItDown 是一个轻量级 Python 工具,用于将各种文件转换为 Markdown,以便与大型语言模型(LLM)和相关文本分析管道配合使用。它与 [textract] 最为相似,但专注于保留文档结构和内容(包括标题、列表、表格、链接等)。虽然输出通常具有一定可读性,但主要用于文本分析工具,而非面向人类的高保真文档转换。PDFPowerPointWordExcel图像(EXIF 元数据和 OCR)音频(EXIF 元数据和语音转写)HTML。
2025-04-09 14:20:06
1164
原创 基于LLM的Data Interpreter数据分析Agent
它先是通过层次图建模,把复杂的数据科学难题,分解成一个个可以轻松管理的子问题,然后再细化成具体的行动步骤。简单来说,就是把一个个数据科学任务看作是图里的节点,而任务和任务之间的依赖关系,就成了连接这些节点的边。它将数据科学工作流程转化为层次图建模问题,把任务表示为节点,任务间的依赖关系表示为边,通过这种结构实现灵活的任务管理。大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。
2025-04-06 12:26:50
1201
原创 开源力量:Open Deep Search引领搜索新时代
大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。
2025-04-05 22:08:19
594
原创 解锁FinSphere:金融科技领域的股票分析新利器
大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。
2025-04-05 18:43:25
795
原创 大语言模型首次通过图灵测试--llm已经接近AGI
该研究标志着 AI 在自然对话领域的重大进步,但也敲响了警钟:当 AI 能以假乱真时,人类需重新定义 “智能” 与 “人性” 的边界。:招募 UCSD 心理学本科生和 Prolific 平台的参与者,让他们进行 8 轮对话,每轮与两个人同时交流,其中一个是人类,另一个是 AI,判断谁是人类。*大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。:模拟人类打字速度和思考时间,增强欺骗性。
2025-04-02 14:14:24
910
原创 基于异构图神经网络的勒索软件检测技术实践
本文提出的异构图神经网络方法为勒索软件检测提供了新思路,通过Cuckoo沙箱的动态行为捕获和图结构的语义建模,显著提升了检测精度。随着图神经网络技术的不断发展,结合更多维度的特征分析,将为网络安全防御体系提供更强大的支撑。关注“AI拉呱公众号”一起学习更多AI知识!
2025-04-02 11:44:14
950
原创 基于动态行为特征的勒索软件检测技术解析
SecureBERT的诞生,标志着网络安全领域从“人工驱动”向“智能驱动”的关键跨越。它不仅是一个模型,更是一座桥梁——连接自然语言的模糊性与安全分析的严谨性。在数据即战场的时代,让机器真正“理解”安全语言,或许正是筑牢数字防线的第一步。(注:本文基于论文《SecureBERT: A Cybersecurity Language Model for Automated Threat Intelligence Processing》核心内容整理,原文详见[链接]。关注“AI拉呱公众号”一起学习更多AI知识。
2025-04-01 21:56:48
495
原创 n8n:重塑大语言模型的工作流自动化格局
大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。
2025-04-01 14:23:21
1145
原创 深度解析勒索软件检测与分类的前沿技术
大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。
2025-04-01 13:41:56
834
原创 勒索病毒和木马网络行为分析与识别技术探究
本文通过对恶意代码网络行为的深入分析,提出了一种有效的网络流量识别方法。该方法利用网络流的统计特征和随机森林算法,在实验中取得了良好的效果,为恶意代码的检测提供了新的思路和方法。未来,随着研究的不断深入,相信该方法将在网络安全领域发挥更大的作用。关注“AI拉呱公众号”一起学习更多AI知识!
2025-03-31 17:56:26
746
原创 当BERT穿上“安全盔甲”:SecureBERT如何破解网络安全文本的语义密码?
SecureBERT的诞生,标志着网络安全领域从“人工驱动”向“智能驱动”的关键跨越。它不仅是一个模型,更是一座桥梁——连接自然语言的模糊性与安全分析的严谨性。在数据即战场的时代,让机器真正“理解”安全语言,或许正是筑牢数字防线的第一步。(注:本文基于论文《SecureBERT: A Cybersecurity Language Model for Automated Threat Intelligence Processing》核心内容整理,原文详见[链接]。关注“AI拉呱公众号”一起学习更多AI知识。
2025-03-30 22:53:09
512
原创 FinSphere:用实时数据与定量工具重塑股票分析的对话式智能体
FinSphere的诞生,标志着AI从“数据搬运工”向“价值创造者”的跨越。通过将实时数据的“时效性”、定量工具的“精确性”与大模型的“灵活性”深度融合,它不仅解决了现有金融LLM的核心痛点,更打开了“普惠金融分析”的大门。随着技术的成熟,或许我们正站在一个新起点——当每个投资者都能拥有专属的“AI分析师”,金融市场的效率与公平性,都将迎来前所未有的变革。
2025-03-30 12:52:12
826
原创 用SDN技术揪出加密勒索软件:基于HTTP流量特征的检测方案
加密勒索软件的本质是一场“通信战”——黑客依赖稳定的C&C通道完成攻击,而SDN技术恰好能在网络层切断这一生命线。通过分析HTTP流量的“行为指纹”,我们无需依赖病毒特征库,就能从海量流量中精准识别威胁。让流量本身成为防御的“眼睛”,在数据加密前阻止攻击。在勒索软件变种不断涌现的今天,这种轻量级、高效的检测方案,或许会成为企业和个人网络安全的“新防线”。关注“AI拉呱公众号”一起学习更多AI知识!
2025-03-30 12:48:41
886
基于U-Net架构下融合生成对抗网络GAN与Transformer的专一或多类别图像修复算法.zip
2025-04-02
一个使用机器学习和自然语言处理(NLP)来回答与疾病和症状相关的用户查询的智能聊天机器人.zip
2025-04-19
项目使用逻辑回归、决策树和随机森林算法实现了一种机器学习模型来检测乳腺癌。目标是根据从医学影像数据中提取的特征将肿瘤分类为良性(0)或恶性(1).zip
2025-04-19
机器学习模型从医学图像(例如 X 光片)中检测肺炎,目的是协助医疗专业人员进行早期诊断.zip
2025-04-19
一个用于将医学影像数据集(.mha、.raw、.dcm)转换为.pickle 格式以用于机器学习工作流程的 Python 模块.zip
2025-04-19
使用机器学习技术预测心脏病。它使用年龄、性别、胆固醇和血压等医学特征。将 CatBoost 应用于数据集,以对一个人是否有患心脏病的风险进行分类.zip
2025-04-19
使用机器学习技术预测心脏病的可能性。数据集包括年龄、血压、胆固醇和心率等医疗特征。该模型使用诸如 CatBoost 和随机森林等算法来预测心脏病的存在,有助于早期诊断.zip
2025-04-19
疾病预测和医疗推荐系统利用机器学习技术,根据用户输入的症状来预测疾病。它为特定疾病提供量身定制的药物、饮食和锻炼建议.zip
2025-04-19
基于年龄、体重指数、血糖水平等医疗特征,使用机器学习来预测糖尿病风险。该模型是使用 CatBoost 和随机森林算法开发的.zip
2025-04-19
基于Python 和 Streamlit 开发的交互式应用程序,可以根据临床数据预测心脏病风险.zip
2025-04-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人