【深度学习】卷积网络(CNN)学习笔记

傅里叶变换包含了关于物体朝向的信息。如果物体被旋转了一个角度,从图像像素上可能很难判断,但从频域上可以很明显地看出来。这是个很重要的启发,基于傅里叶定理,我们知道卷积神经网络在频域上检测图像并且捕捉到了物体的方向信息。于是卷积神经网络就比传统算法更擅长处理旋转后的图像。

对时序数据,有两种重要的模型:weighted moving average 和autoregressive模型

深度学习是机器学习分支的概念非常重要,它继承了机器学习依赖模型自身获得参数的优点,同时它又超越了传统机器学习人工提取特征的限制,能够在大数据中进行自学习提取特征。但它同所有机器学习一样受限于训练数据和输入数据不同的问题。

卷积神经网络将特征提取器与机器学习有机的结合了起来。

图像信息具有典型性,因此当前的卷积神经网络技术主要应用在机器视觉领域。这种局部与整体的关系也可以看作是不同的频率信息构建的特征,许多序列信号也具有这样的特征,以人体信号为例,处于不同频段和幅度的PQRST波构成了ECG信号,而波形的变化也与对应的病征具有很强的关联性。因此,使用CNN对以ECG为代表的时序信号进行处理也是可行的。

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页