Win10深度学习环境搭建步骤记录(cuda10.0+keras+tensorflow+pytorch)

环境搭配(可根据自身需要以及版本变化进行调整):
1、cuda10.0 + tf-1.13.2+keras-2.2.5(2.3.1) / tf-1.14.0+keras-2.3.1 / tf-1.15.2+keras-2.3.1,科研开发兼容
2、torch1.4.0+cu100 & torchvision0.5.0+cu100
3、下载cuda10.1备用

一、安装anaconda3

第一步:安装anaconda3,选择window版64位下载https://www.anaconda.com/distribution/#download-section
在这里插入图片描述
下载完成后进行安装:
在这里插入图片描述
pyhton稍后安装
在这里插入图片描述
安装完成后,在开始菜单中可以看到anaconda3文件夹,下面有spyder软件和jupyter,都可以用来编程:
在这里插入图片描述

二、下载安装cuda和cudnn

1、下载cuda10.0,下载链接https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
2、下载cudnn,找到cuda对应的版本,下载链接https://developer.nvidia.com/rdp/cudnn-archive(可能需要先注册或登录)
在这里插入图片描述
登录之后可能出现:
在这里插入图片描述
3、找到下载的cuda进行安装:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(如果没有下载Visual Studio,在最后会提示下载,要下载之后才能安装成功)
最后显示全部已安装即安装成功。
4、找到下载的cudnn进行配置:

cudnn是不要安装的,只需要将解压后的文件放到cuda的安装目录(默认是C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0)就好,注意,这里是v10.0,换成自己安装的cuda的版本号。

在这里插入图片描述
5、环境变量设置(计算机右键—>属性—>高级系统设置—>环境变量—>系统变量—>path—>编辑—>新建)不出问题都是已经有了,检查一下即可

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\libnvvp

【注】想使用多个cuda版本的,按照同样的步骤下载其他版本的cuda,多个cuda放在一个文件夹下,然后修改系统变量,把想用的那一版的系统变量上移即可

三、安装keras和tensorflow-gpu

anaconda升级为python更高级的版本,通过创建python3.7虚拟环境再进行后续安装

conda create -n py37 python=3.7

1、可以先安装一些包
win+R打开运行,输入cmd进入命令行面板,输入下面代码(用清华镜像下载较快,而且不容易断)

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -U numpy==1.17.5 imgaug==0.3.0 scikit-image==0.15.0 Pillow==6.2.1 imbalanced-learn==0.5.0 scikit-learn==0.22.2 pydot==1.3

2、安装keras和tensorflow-gpu

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -U tensorflow-gpu==1.15.2 keras==2.3.1

输入下列代码检测是否安装成功

ipython
import tensorflow as tf
import keras
//Using TensorFlow backend.
print(tf.test.is_built_with_cuda())
//True

sess = tf.Session()
hello = tf.constant('Hello, TensorFlow!')
sess.run(hello)

或配置虚拟环境安装tensorflow

conda create -n tensorflow pip python=3.7
activate tensorflow
pip install --ignore-installed --upgrade tensorflow-gpu=1.15.2

四、安装pytorch

到pytorch官网https://pytorch.org/可以按照版本和安装方式获得安装命令
在这里插入图片描述
配置虚拟环境安装pytorch

conda create -n pytorch python=3.7 
activate pytorch
//采用官网提供的命令下载很慢且易断,用国内镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
//安装自己需要版本的pytorch和torchvision
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1 -c pytorch

如果命令行安装不成功,可用离线安装包下载 https://download.pytorch.org/whl/torch_stable.html
在这里插入图片描述
在这里插入图片描述

下载安装包后,使用命令行安装

pip install 离线包路径

安装完成后,在命令行输入

python
import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.enabled)
x = torch.rand(5, 3)
x = x.cuda()
y = torch.rand(5, 3)
y = y.cuda()
print(x+y)

如下显示即成功
在这里插入图片描述

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页