SSD学习小结

本文介绍了卷积神经网络CNN的基本原理,包括卷积、步长、零填充等概念,以及ReLU和池化的作用。接着详细讲解了SSD(Single Shot MultiBox Detector)算法,描述了SSD如何利用不同尺度的特征图进行目标检测,并采用default box进行预测。训练过程中,文章提到了正负样本匹配策略、hard negative mining以及损失函数。预测阶段则涵盖了置信度筛选、解码和非极大值抑制NMS的过程。
摘要由CSDN通过智能技术生成

首先记录一下什么是卷积神经网络CNN
卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。
这里写图片描述
一张图片里的图像可以表示为像素值的矩阵。
利用卷积从图像矩阵中提取特征,从而得到特征图(Feature map)。
特征图的不同由以下三个卷积核/滤波器/特征检测器参数控制:
1. 深度(Depth)
卷积操作所需的特征检测器个数
2. 步长(Stride)
在输入矩阵上滑动滤波矩阵的像素数
3. 零填充(Zero-padding)
在输入矩阵的边缘使用零值进行填充,可以对输入图像矩阵的边缘进行滤波。零填充的一大好处是可以控制特征图的大小。
一般会有一个线性修正单元ReLU,应用到各个像素,将特征图中的所有小于0 的像素值设置为零。目的:在 ConvNet 中引入非线性。因为在大部分时候希望 ConvNet 学习的实际数据是非线性的。
池化函数可以逐渐降低输入表示的空间尺度。空间池化(Spatial Pooling)(下采样)降低了各个特征图的维度,但可以保持大部分重要的信息。使输入表示(特征维度)变得更小,并且网络中的参数和计算的数量更加可控的减小,防止过拟合;使网络对于输入图像中更小的变化、冗余和变换变得不变性(输入的微小冗余将不会改变池化的输出——因为在局部邻域中使用了最大化/平均值的操作);帮

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值