多变量高斯分布的KL散度

多变量高斯分布的KL散度

假设多元变量 x x x服从多元变量高斯分布(也称为多变量高斯分布,multivariate Gaussian distribution),即 x ∼ N ( μ , Σ ) x\sim \mathcal{N}(\mu,\Sigma) xN(μ,Σ),其中 μ \mu μ为均值, Σ \Sigma Σ为协方差矩阵,则多变量高斯分布的概率密度函数PDF定义为
f ( x ) = 1 ( 2 π ) N ( det ⁡ Σ ) 1 2 exp ⁡ { − ( x − μ ) T Σ − 1 ( x − μ ) 2 } f(x)=\frac{1}{(\sqrt{2\pi})^N (\det \Sigma)^{\frac{1}{2}}}\exp\{-\frac{(x-\mu)^T\Sigma^{-1}(x-\mu)}{2}\} f(x)=(2π )N(detΣ)211exp{2(xμ)TΣ1(xμ)}
其中协方差矩阵 Σ \Sigma Σ满足对称正定性质, N N N为多元变量 x x x的维数。

两个多变量高斯分布之间的KL散度为
D K L ( p ( x ) ∣ ∣ q ( x ) ) = ∫ p ( x ) log ⁡ p ( x ) q ( x ) d x = E p ( x ) [ log ⁡ p ( x ) − log ⁡ q ( x ) ] = 1 2 E p ( x ) [ − log ⁡ det ⁡ Σ 1 − ( x − μ 1 ) T Σ 1 − 1 ( x − μ 1 ) + log ⁡ det ⁡ Σ 2 + ( x − μ 2 ) T Σ 2 − 1 ( x − μ 2 ) ] = 1 2 log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 + 1 2 E p ( x ) [ − ( x − μ 1 ) T Σ 1 − 1 ( x − μ 1 ) + ( x − μ 2 ) T Σ 2 − 1 ( x − μ 2 ) ] = 1 2 log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 + 1 2 E p ( x ) { − t r [ Σ 1 − 1 ( x − μ 1 ) ( x − μ 1 ) T ] + t r [ Σ 2 − 1 ( x − μ 2 ) ( x − μ 2 ) T ] } = 1 2 log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 − 1 2 t r { E p ( x ) [ Σ 1 − 1 ( x − μ 1 ) ( x − μ 1 ) T ] } + 1 2 t r { E p ( x ) [ Σ 2 − 1 ( x − μ 2 ) ( x − μ 2 ) T ] } = 1 2 log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 − N 2 + 1 2 t r { E p ( x ) [ Σ 2 − 1 ( x x T − μ 2 x T − x μ 2 T + μ 2 μ 2 T ) ] } = 1 2 log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 − N 2 + 1 2 t r [ Σ 2 − 1 ( Σ 1 + μ 1 μ 1 T − μ 2 μ 1 T − μ 1 μ 2 T + μ 2 μ 2 T ) ] = 1 2 log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 − N 2 + 1 2 t r ( Σ 2 − 1 Σ 1 ) + 1 2 t r [ Σ 2 − 1 ( μ 1 μ 1 T − μ 2 μ 1 T − μ 1 μ 2 T + μ 2 μ 2 T ) ] = 1 2 { log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 − N + t r ( Σ 2 − 1 Σ 1 ) + t r ( μ 1 T Σ 2 − 1 μ 1 − μ 1 T Σ 2 − 1 μ 2 − μ 2 T Σ 2 − 1 μ 1 + μ 2 T Σ 2 − 1 μ 2 ) } = 1 2 { log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 − N + t r ( Σ 2 − 1 Σ 1 ) + t r ( μ 1 T Σ 2 − 1 μ 1 − 2 μ 1 T Σ 2 − 1 μ 2 + μ 2 T Σ 2 − 1 μ 2 ) } = 1 2 { log ⁡ det ⁡ Σ 2 det ⁡ Σ 1 − N + t r ( Σ 2 − 1 Σ 1 ) + ( μ 2 − μ 1 ) T Σ 2 − 1 ( μ 2 − μ 1 ) } \begin{aligned} &\quad D_{KL}(p(x)||q(x))=\int p(x) \log \frac{p(x)}{q(x)} dx=\mathbb{E}_{p(x)}[\log p(x)-\log q(x)]\\ &=\frac{1}{2}\mathbb{E}_{p(x)}[-\log\det \Sigma_1-(x-\mu_1)^T\Sigma_1^{-1}(x-\mu_1)+\log\det \Sigma_2+(x-\mu_2)^T\Sigma_2^{-1}(x-\mu_2)]\\ &=\frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1}+\frac{1}{2}\mathbb{E}_{p(x)}[-(x-\mu_1)^T\Sigma_1^{-1}(x-\mu_1)+(x-\mu_2)^T\Sigma_2^{-1}(x-\mu_2)]\\ &=\frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1}+\frac{1}{2}\mathbb{E}_{p(x)}\{-tr[\Sigma_1^{-1}(x-\mu_1)(x-\mu_1)^T]+tr[\Sigma_2^{-1}(x-\mu_2)(x-\mu_2)^T]\}\\ &=\frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1}-\frac{1}{2}tr\{\mathbb{E}_{p(x)}[\Sigma_1^{-1}(x-\mu_1)(x-\mu_1)^T]\} +\frac{1}{2}tr\{\mathbb{E}_{p(x)}[\Sigma_2^{-1}(x-\mu_2)(x-\mu_2)^T]\}\\ &=\frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1}-\frac{N}{2} +\frac{1}{2}tr\{\mathbb{E}_{p(x)}[\Sigma_2^{-1}(xx^T-\mu_2x^T-x\mu_2^T+\mu_2\mu_2^T)]\}\\ &=\frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1}-\frac{N}{2} +\frac{1}{2}tr[\Sigma_2^{-1}(\Sigma_1+\mu_1\mu_1^T-\mu_2\mu_1^T-\mu_1\mu_2^T+\mu_2\mu_2^T)]\\ &=\frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1}-\frac{N}{2} +\frac{1}{2}tr(\Sigma_2^{-1}\Sigma_1)+\frac{1}{2}tr[\Sigma_2^{-1}(\mu_1\mu_1^T-\mu_2\mu_1^T-\mu_1\mu_2^T+\mu_2\mu_2^T)]\\ &=\frac{1}{2}\{\log \frac{\det \Sigma_2}{\det \Sigma_1}-N +tr(\Sigma_2^{-1}\Sigma_1)+tr(\mu_1^T\Sigma_2^{-1}\mu_1-\mu_1^T\Sigma_2^{-1}\mu_2-\mu_2^T\Sigma_2^{-1}\mu_1+\mu_2^T\Sigma_2^{-1}\mu_2)\}\\ &=\frac{1}{2}\{\log \frac{\det \Sigma_2}{\det \Sigma_1}-N +tr(\Sigma_2^{-1}\Sigma_1)+tr(\mu_1^T\Sigma_2^{-1}\mu_1-2\mu_1^T\Sigma_2^{-1}\mu_2+\mu_2^T\Sigma_2^{-1}\mu_2)\}\\ &=\frac{1}{2}\{\log \frac{\det \Sigma_2}{\det \Sigma_1}-N +tr(\Sigma_2^{-1}\Sigma_1)+(\mu_2-\mu_1)^T\Sigma_2^{-1}(\mu_2-\mu_1)\}\\ \end{aligned} DKL(p(x)q(x))=p(x)logq(x)p(x)dx=Ep(x)[logp(x)logq(x)]=21Ep(x)[logdetΣ1(xμ1)TΣ11(xμ1)+logdetΣ2+(xμ2)TΣ21(xμ2)]=21logdetΣ1detΣ2+21Ep(x)[(xμ1)TΣ11(xμ1)+(xμ2)TΣ21(xμ2)]=21logdetΣ1detΣ2+21Ep(x){tr[Σ11(xμ1)(xμ1)T]+tr[Σ21(xμ2)(xμ2)T]}=21logdetΣ1detΣ221tr{Ep(x)[Σ11(xμ1)(xμ1)T]}+21tr{Ep(x)[Σ21(xμ2)(xμ2)T]}=21logdetΣ1detΣ22N+21tr{Ep(x)[Σ21(xxTμ2xTxμ2T+μ2μ2T)]}=21logdetΣ1detΣ22N+21tr[Σ21(Σ1+μ1μ1Tμ2μ1Tμ1μ2T+μ2μ2T)]=21logdetΣ1detΣ22N+21tr(Σ21Σ1)+21tr[Σ21(μ1μ1Tμ2μ1Tμ1μ2T+μ2μ2T)]=21{logdetΣ1detΣ2N+tr(Σ21Σ1)+tr(μ1TΣ21μ1μ1TΣ21μ2μ2TΣ21μ1+μ2TΣ21μ2)}=21{logdetΣ1detΣ2N+tr(Σ21Σ1)+tr(μ1TΣ21μ12μ1TΣ21μ2+μ2TΣ21μ2)}=21{logdetΣ1detΣ2N+tr(Σ21Σ1)+(μ2μ1)TΣ21(μ2μ1)}
其中运用到的一些矩阵等式:

  • 矩阵的迹的性质

矩 阵 线 性 组 合 迹 不 变 : t r ( α A + β B ) = α t r ( A ) + β t r ( B ) 矩阵线性组合迹不变:tr(\alpha A+\beta B)=\alpha tr(A)+\beta tr(B) 线tr(αA+βB)=αtr(A)+βtr(B)

矩 阵 转 置 迹 不 变 : t r ( A ) = t r ( A T ) 矩阵转置迹不变:tr(A)=tr(A^T) tr(A)=tr(AT)

两 方 阵 相 乘 交 换 迹 不 变 : t r ( A B ) = t r ( B A ) 两方阵相乘交换迹不变:tr(AB)=tr(BA) tr(AB)=tr(BA)

轮 换 不 变 性 : t r ( A B C ) = t r ( B C A ) = t r ( C A B ) 轮换不变性:tr(ABC)=tr(BCA)=tr(CAB) tr(ABC)=tr(BCA)=tr(CAB)

对于列向量 λ \lambda λ λ T A λ \lambda^TA\lambda λTAλ的结果是一个标量,而标量的迹就是这个标量,即 t r ( λ T A λ ) = λ T A λ tr(\lambda^TA\lambda)=\lambda^TA\lambda tr(λTAλ)=λTAλ,因此
λ T A λ = t r ( λ T A λ ) = t r ( A λ λ T ) \lambda^TA\lambda=tr(\lambda^TA\lambda)=tr(A\lambda\lambda^T) λTAλ=tr(λTAλ)=tr(AλλT)

  • 多变量分布中期望 μ \mu μ与协方差 Σ \Sigma Σ的性质

(1) E [ x x T ] = Σ + μ μ T \mathbb{E}[xx^T]=\Sigma+\mu \mu^T E[xxT]=Σ+μμT
证 明 : Σ = E [ ( x − μ ) ( x − μ ) T ] = E [ ( x x T − x μ T − μ x T + μ μ T ] = E [ x x T ] − μ μ T − μ μ T + μ μ T = E [ x x T ] − μ μ T \begin{aligned} 证明:\Sigma&=\mathbb{E}[(x-\mu)(x-\mu)^T]\\ &=\mathbb{E}[(xx^T-x\mu^T-\mu x^T+\mu\mu^T]\\ &=\mathbb{E}[xx^T]-\mu\mu^T-\mu\mu^T+\mu\mu^T\\ &=\mathbb{E}[xx^T]-\mu\mu^T \end{aligned} Σ=E[(xμ)(xμ)T]=E[(xxTxμTμxT+μμT]=E[xxT]μμTμμT+μμT=E[xxT]μμT
(2) E ( x T A x ) = t r ( A Σ ) + μ T A μ \mathbb{E}(x^TAx)=tr(A\Sigma)+\mu^TA\mu E(xTAx)=tr(AΣ)+μTAμ
证 明 : 因 为 x T A x 的 结 果 是 一 个 标 量 , 利 用 前 面 提 到 的 t r i c k ( t r ( x T A x ) = t r ( A x x T ) , 可 得 : E ( x T A x ) = E [ t r ( A x x T ) ] = t r [ E ( A x x T ) ] = t r [ A E ( x x T ) ] = t r [ A ( Σ + μ μ T ) ] = t r ( A Σ ) + t r ( A μ μ T ) = t r ( A Σ ) + t r ( μ T A μ ) = t r ( A Σ ) + μ T A μ \begin{aligned} 证明:& 因为x^TAx的结果是一个标量,利用前面提到的trick(tr(x^TAx)=tr(Axx^T),可得:\\ &\quad \mathbb{E}(x^TAx)=\mathbb{E}[tr(Axx^T)]=tr[\mathbb{E}(Axx^T)]\\ &=tr[A\mathbb{E}(xx^T)]=tr[A(\Sigma+\mu \mu^T)]=tr(A\Sigma)+tr(A\mu\mu^T)\\ &=tr(A\Sigma)+tr(\mu^TA\mu)=tr(A\Sigma)+\mu^TA\mu \end{aligned} xTAxtricktr(xTAx=tr(AxxT)E(xTAx)=E[tr(AxxT)]=tr[E(AxxT)]=tr[AE(xxT)]=tr[A(Σ+μμT)]=tr(AΣ)+tr(AμμT)=tr(AΣ)+tr(μTAμ)=tr(AΣ)+μTAμ

上式的证明中考虑了求迹运算 t r ( ⋅ ) tr(\cdot) tr()和求期望运算 E [ ⋅ ] \mathbb{E}[\cdot] E[]的可交换性.

参考:
[1]: https://blog.csdn.net/wangpeng138375/article/details/78060753

  • 6
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
高斯分布之间的KL散度公式可以表示为: KL(P||Q) = 1/2 * (tr(Σ2/Q) + (u-Q)^T * Q^(-1) * (u-Q) - k + ln(det(Q)/det(Σ))) 其中,P和Q分别表示两个高斯分布,u是均值向量,Σ和Q分别是协方差矩阵,k是维度。\[2\] #### 引用[.reference_title] - *1* [深度学习/机器学习入门基础数学知识整理(八):中心极限定理,一元和多元高斯分布](https://blog.csdn.net/xbinworld/article/details/104303216)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [两个高斯分布之间的KL散度](https://blog.csdn.net/qq_33552519/article/details/130561606)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [多变量高斯分布之间的KL散度(KL Divergence)](https://blog.csdn.net/wangpeng138375/article/details/78060753)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值