从Chapman–Kolmogorov 方程推导出n步转移矩阵

In this article, I will derive the n n n-step transition matrix from Chapman–Kolmogorov equations.

Before the derivation, we define P i j n = P ( X n + k = j ∣ X k = i ) P^{n}_{ij}=P(X_{n+k}=j|X_{k}=i) Pijn=P(Xn+k=jXk=i) as the n n n-step transition probability from state i i i to state j j j, P ( n ) \textbf{P}^{(n)} P(n) as the n n n-step transition matrix and P \textbf{P} P as the one-step transition matrix. Here, we note that P ( n ) \textbf{P}^{(n)} P(n) does not denote the multiplication of n n n matrix P \textbf{P} P, which will be derived in the following. To continue the derivation, the Chapman–Kolmogorov equations are given as
P i j n + m = ∑ k = 0 ∞ P i k n P k j m , ( 1 ) P_{ij}^{n+m}=\sum_{k=0}^{\infty}P_{ik}^{n}P_{kj}^{m},(1) Pijn+m=k=0PiknPkjm,(1) for all n , m ≥ 0 n,m\geq0 n,m0 and all i , j i,j i,j.
My explanation of equation (1): equation (1) can be interpreted as the multiplication of two infinite matrix i . e . i.e. i.e. P i j n + m P_{ij}^{n+m} Pijn+m is the dot product of the i t h i_{th} ith row of the n n n-step transition matrix and the j t h j_{th} jth column of the m m m-step transition matrix. The preliminary sketch is as followsFig.1
Problem: Derive P ( n ) = P n \textbf{P}^{(n)}=\textbf{P}^{n} P(n)=Pn based on equation (1).
Solution: Combining Fig. 1 with equation (1), we can obtain the relationship between P ( n + m ) \textbf{P}^{(n+m)} P(n+m), P ( n ) \textbf{P}^{(n)} P(n) and P ( m ) \textbf{P}^{(m)} P(m), which is
P ( n + m ) = P ( n ) ⋅ P ( m ) . ( 2 ) \textbf{P}^{(n+m)}=\textbf{P}^{(n)}\cdot\textbf{P}^{(m)}.(2) P(n+m)=P(n)P(m).(2)
Based on equation (2), we can using induction to solve the problem. Induction involves two steps. The first step is to prove P ( n ) = P n \textbf{P}^{(n)}=\textbf{P}^{n} P(n)=Pn when n = 1 n=1 n=1. The second steo is to suppose when n = k n=k n=k, k ≥ 1 \geq1 1, P ( k ) = P k \textbf{P}^{(k)}=\textbf{P}^{k} P(k)=Pk. Then P ( k + 1 ) = P k + 1 \textbf{P}^{(k+1)}=\textbf{P}^{k+1} P(k+1)=Pk+1. For this problem, we have P ( 1 ) = P 1 \textbf{P}^{(1)}=\textbf{P}^{1} P(1)=P1 by definition. For the second step, we suppose that when ( n = k − 1 , k − 1 ≥ 1 n=k-1,k-1\geq1 n=k1,k11) is given, P ( k − 1 ) = P k − 1 \textbf{P}^{(k-1)}=\textbf{P}^{k-1} P(k1)=Pk1. Then when ( n = ( k − 1 ) + 1 = k n=(k-1)+1=k n=(k1)+1=k), we have
P ( ( k − 1 ) + 1 ) = P ( k − 1 ) ⋅ P ( 1 ) = P k − 1 ⋅ P = P k , k ≥ 2. ( 3 ) \textbf{P}^{((k-1)+1)}=\textbf{P}^{(k-1)}\cdot\textbf{P}^{(1)}=\textbf{P}^{k-1}\cdot\textbf{P}=\textbf{P}^{k}, k\geq2.(3) P((k1)+1)=P(k1)P(1)=Pk1P=Pk,k2.(3)
The first equation in (3) is guaranteed by equation (1), the second equation is guaranteed by the fist step of induction and the supposition in the second step of induction and the third equation is guaranteed by Matrix multiplication. Now P ( n ) = P n \textbf{P}^{(n)}=\textbf{P}^{n} P(n)=Pn if proved for n ≥ 1 n\geq1 n1 based on Chapman–Kolmogorov equations.

The above content will synchronize to WeChat public accounts!
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值