叉积是向量的两种主要运算之一。我们设两个空间三维向量分别为
a
=
(
a
x
,
a
y
,
a
z
)
,
b
=
(
b
x
,
b
y
,
b
z
)
\bm{a}=(a_x,a_y,a_z),b=(b_x,b_y,b_z)
a=(ax,ay,az),b=(bx,by,bz)三维向量的叉积的两种定义分别为
c
=
a
×
b
=
(
a
y
b
z
−
a
z
b
y
,
a
x
b
z
−
a
z
b
x
,
a
x
b
y
−
a
y
b
x
)
c
=
a
×
b
=
∣
a
∣
∣
b
∣
sin
θ
\bm{c}=\bm{a} \times \bm{b}=(a_y b_z - a_z b_y,a_x b_z - a_z b_x,a_x b_y -a_y b_x) \\ \bm{c}=\bm{a} \times \bm{b}=|\bm{a}||\bm{b}|\sin \theta
c=a×b=(aybz−azby,axbz−azbx,axby−aybx)c=a×b=∣a∣∣b∣sinθ前一个定义是分量形式,后一个定义表示三维向量的叉积实际上是两个三维向量构成的平行四边形的面积。进一步地,叉积结果的各个分量是三维向量构成的平行四边形在三个平面上投影的平行四边形的面积。我们以叉积
c
\bm{c}
c的
z
\bm{z}
z轴分量为例,
c
z
\bm{c_z}
cz实际上是三维向量构成的平行四边形在
x
o
y
xoy
xoy平面上投影的平行四边形的面积。也就是要证明该面积的大小是
a
x
b
y
−
a
y
b
x
a_x b_y - a_y b_x
axby−aybx。为了便于理解,我们采用几何的方法证明,如下图
如图所示,
(
a
x
,
a
y
)
和
(
b
x
,
b
y
)
(a_x,a_y)和(b_x,b_y)
(ax,ay)和(bx,by)是三维向量在
x
o
y
xoy
xoy上的投影。从图中可以看到
a
x
b
y
a_x b_y
axby是大正方形的面积,
a
y
b
x
a_y b_x
aybx是小正方形的面积,我们对平行四边形切割补充到大正方形的非平行四边形区域,设平行四边形位于大正方形区域内的面积为
f
f
f,定义其他面积为
a
,
b
,
c
,
d
,
e
a,b,c,d,e
a,b,c,d,e。我们可以得到大正方形的面积可以表示为
a
x
b
y
=
f
+
(
a
+
b
+
e
)
+
(
c
+
b
+
d
)
=
(
f
+
a
+
b
+
c
)
+
(
e
+
b
+
d
)
a_x b_y=f+(a+b+e)+(c+b+d) =(f+a+b+c)+(e+b+d)
axby=f+(a+b+e)+(c+b+d)=(f+a+b+c)+(e+b+d)从该公式,我们可以看到
(
f
+
a
+
b
+
c
)
(f+a+b+c)
(f+a+b+c)即
S
平
行
四
边
形
S_{平行四边形}
S平行四边形,
(
e
+
b
+
d
)
(e+b+d)
(e+b+d)即大正方形的面积—
a
y
b
x
a_y b_x
aybx,故
S
平
行
四
边
形
S_{平行四边形}
S平行四边形可以表示为
S
平
行
四
边
形
=
a
x
b
y
−
a
y
b
x
S_{平行四边形}=a_x b_y - a_y b_x
S平行四边形=axby−aybx至此,我们已经用几何的方法证明了二维平面上叉积公式的由来。
更多内容尽在微信公众号!
如何证明向量的叉积公式?
最新推荐文章于 2025-02-22 18:56:14 发布