如何证明向量的叉积公式?

叉积是向量的两种主要运算之一。我们设两个空间三维向量分别为
a = ( a x , a y , a z ) , b = ( b x , b y , b z ) \bm{a}=(a_x,a_y,a_z),b=(b_x,b_y,b_z) a=(ax,ay,az),b=(bx,by,bz)三维向量的叉积的两种定义分别为
c = a × b = ( a y b z − a z b y , a x b z − a z b x , a x b y − a y b x ) c = a × b = ∣ a ∣ ∣ b ∣ sin ⁡ θ \bm{c}=\bm{a} \times \bm{b}=(a_y b_z - a_z b_y,a_x b_z - a_z b_x,a_x b_y -a_y b_x) \\ \bm{c}=\bm{a} \times \bm{b}=|\bm{a}||\bm{b}|\sin \theta c=a×b=(aybzazby,axbzazbx,axbyaybx)c=a×b=absinθ前一个定义是分量形式,后一个定义表示三维向量的叉积实际上是两个三维向量构成的平行四边形的面积。进一步地,叉积结果的各个分量是三维向量构成的平行四边形在三个平面上投影的平行四边形的面积。我们以叉积 c \bm{c} c z \bm{z} z轴分量为例, c z \bm{c_z} cz实际上是三维向量构成的平行四边形在 x o y xoy xoy平面上投影的平行四边形的面积。也就是要证明该面积的大小是 a x b y − a y b x a_x b_y - a_y b_x axbyaybx。为了便于理解,我们采用几何的方法证明,如下图在这里插入图片描述
如图所示, ( a x , a y ) 和 ( b x , b y ) (a_x,a_y)和(b_x,b_y) (ax,ay)(bx,by)是三维向量在 x o y xoy xoy上的投影。从图中可以看到 a x b y a_x b_y axby是大正方形的面积, a y b x a_y b_x aybx是小正方形的面积,我们对平行四边形切割补充到大正方形的非平行四边形区域,设平行四边形位于大正方形区域内的面积为 f f f,定义其他面积为 a , b , c , d , e a,b,c,d,e a,b,c,d,e。我们可以得到大正方形的面积可以表示为
a x b y = f + ( a + b + e ) + ( c + b + d ) = ( f + a + b + c ) + ( e + b + d ) a_x b_y=f+(a+b+e)+(c+b+d) =(f+a+b+c)+(e+b+d) axby=f+(a+b+e)+(c+b+d)=(f+a+b+c)+(e+b+d)从该公式,我们可以看到 ( f + a + b + c ) (f+a+b+c) (f+a+b+c) S 平 行 四 边 形 S_{平行四边形} S ( e + b + d ) (e+b+d) (e+b+d)即大正方形的面积— a y b x a_y b_x aybx,故 S 平 行 四 边 形 S_{平行四边形} S可以表示为
S 平 行 四 边 形 = a x b y − a y b x S_{平行四边形}=a_x b_y - a_y b_x S=axbyaybx至此,我们已经用几何的方法证明了二维平面上叉积公式的由来。
更多内容尽在微信公众号!在这里插入图片描述

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值