对话系统文献综述

这篇文献综述探讨了对话系统的两类主要类型:任务导向和非任务导向。任务导向系统通过Pipeline和End-to-End方法协助用户完成特定任务,涉及NLU、Dialogue State Tracking、Policy Learning和NLG等环节。非任务导向系统则分为生成式和检索式方法,强调对话上下文、多样性、个性化和知识库利用。深度学习在对话系统中的应用,特别是在意图识别、信念跟踪和回答生成中起着关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

论文:https://arxiv.org/pdf/1711.01731.pdf
该论文对对话系统进行了综述,并讨论了今后可能的研究方向。

目前的对话系统大致被分成两类:

1 任务导向的对话系统

任务为导向的对话系统是帮助用户去完成特定任务,比如找商品,订住宿,订餐厅等。实现任务为导向的对话系统,主要有两类方式:

1) Pipeline method

通过4个步骤去完成对话任务

2)End-to-End method。

端到端地完成对话任务

2 非任务导向的对话系统

非任务导向的对话系统是与用户进行互动并提供回答,简单的说,就是在开放领域的闲聊。实现非任务导向对话系统也主要可分为两类:

1) generative method

生成式对话

2)retrived-based method

答案选择式对话

文章就以上两类对话系统,以及各自的实现方法进行详细综述与讲解。

二、任务导向的对话系统

1 Pipeline method

Pipeline method的步骤可以分为4个,过程如下图所示,分别是自然语言理解–>对话状态跟踪–>策略学习–>自然语言生成
image_1d07b0ete1in01gue1t61r9q3i2p.png-43.7kB

1.自然语言理解 Natrual Language Understanding(NLU)

目标:将用户的输入语句转化为预先设定好的语义槽(semantic slot)

先来个例子:
在任务型对话系统中用户想要查酒店信息,于是说出一个句子:“show restaurant at New York tomorrow.”
理解这个句子需要两个步骤:
(1)首先要判断用户是需要订酒店,而不是订机票,买东西,查快递,那么这属于一个分类问题,即识别用户意图类别
(2)查酒店类别会有与之相对应的预先设定好语义槽(semantic slot),如New York是location的slot value.填充槽值的过程即在句中做词信息的抽取。

以上两步也可分别称作意图识别(intent detection)与槽填充(slot filling):

意图识别: 是分类问题,将用户发出的语句分类到预先设定好

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值