欢迎订阅本专栏:《PyTorch深度学习实践》
订阅地址:https://blog.csdn.net/sinat_33761963/category_9720080.html
- 第二章:认识Tensor的类型、创建、存储、api等,打好Tensor的基础,是进行PyTorch深度学习实践的重中之重的基础。
- 第三章:学习PyTorch如何读入各种外部数据
- 第四章:利用PyTorch从头到尾创建、训练、评估一个模型,理解与熟悉PyTorch实现模型的每个步骤,用到的模块与方法。
- 第五章:学习如何利用PyTorch提供的3种方法去创建各种模型结构。
- 第六章:利用PyTorch实现简单与经典的模型全过程:简单二分类、手写字体识别、词向量的实现、自编码器实现。
- 第七章:利用PyTorch实现复杂模型:翻译机(nlp领域)、生成对抗网络(GAN)、强化学习(RL)、风格迁移(cv领域)。
- 第八章:PyTorch的其他高级用法:模型在不同框架之间的迁移、可视化、多个GPU并行计算。
深度学习的框架层出不穷,各有优势,为了解决各个框架之间模型可以迁移与共用,微软和facebook共同发布了ONNX, Open Neural Exchange,开放式神经网络交换。比如在PyTorch上训练得到的模型,在其他框架上是不可以直接使用的,有了ONNX,我们可以先把PyTorch训练好的模型用ONNX来导出并保存成ONNX模型,再用其他框架将ONNX模型读入。这就好像市场交易,我种的大米不能直接变成好