课程来源:吴恩达 深度学习课程 《结构化机器学习项目》
笔记整理:王小草
时间:2018年6月3日
1.误差分析
1.1 误差分析
当算法还没有到达human level时,你需要去分析算法带来的误差,并且决定接下去应该如何优化,从而减小误差。这个过程叫做误差分析。
将设在猫狗分类的任务上,若dev set上的error有10%,此时你需要找出这些错误的case,然后统计猫错分成狗,和狗错分成猫各自的比例,如果你发现:
狗错分成猫的比例是5%
猫错分成狗的比例是95%
则此时,你无需再花大量时间在处理dog上,否则最多提升5%的正确率;而应该去分析后者。
比如针对猫的图片,将所(一部分)有bad cases找出来之后,依次分析每个badcase造成的原因,并进行统计个二类错误的比例,比如
image | 像狗 | 像大的猫科动物 | 图片太模糊 | … | comments |
---|---|---|---|---|---|
1 | √ | √ | pitbull | ||
2 | √ | ||||
3 | √ | ||||
… | |||||
%of taotal | 8% | 43% | 3% | … |
有了这个表之后,就可以针对每个问题用相应的方法去逐个解决问题。
对error analysis做一个总结
(1)找出所有bad cases
(2)逐一对每个badcase 分析找出原因
(3)分析对应的error 类别
(4)统计不同error类别站总体的比例
(5)发现问题的优先级
(6)构思新的优化方法
1.2 清除错误标注数据
(1)分析错误标注的数据
在训练集中,有人为标记错的样本很正常,因为人也不能百分之百保证正确,但这个标记错分为两类:
a.随机标记错,比如太累了或者没看清,有的时候把猫标成狗,有的时候会把狗标记成猫;
b.系统性错误,比如这批标记的人,就真的没有见过吉娃娃狗,以为他们是猫,于是把所有吉娃娃狗都标记成猫了。
- 对于随机错误,只要整体的训练样本足够大ÿ