【结构化机器学习项目】Lesson 2--机器学习策略2

本文是吴恩达《结构化机器学习项目》的笔记,主要探讨了误差分析、处理错误标注数据的方法以及训练集与开发/测试集不匹配的解决方案。内容包括误差分析的步骤、清除错误标注数据的策略、快速搭建系统进行迭代,以及解决训练集和测试集数据分布不一致的问题。此外,还介绍了迁移学习和多任务学习的应用场景和优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程来源:吴恩达 深度学习课程 《结构化机器学习项目》
笔记整理:王小草
时间:2018年6月3日


1.误差分析

1.1 误差分析

当算法还没有到达human level时,你需要去分析算法带来的误差,并且决定接下去应该如何优化,从而减小误差。这个过程叫做误差分析

将设在猫狗分类的任务上,若dev set上的error有10%,此时你需要找出这些错误的case,然后统计猫错分成狗,和狗错分成猫各自的比例,如果你发现:
狗错分成猫的比例是5%
猫错分成狗的比例是95%
则此时,你无需再花大量时间在处理dog上,否则最多提升5%的正确率;而应该去分析后者。

比如针对猫的图片,将所(一部分)有bad cases找出来之后,依次分析每个badcase造成的原因,并进行统计个二类错误的比例,比如

image 像狗 像大的猫科动物 图片太模糊 comments
1 pitbull
2
3
%of taotal 8% 43% 3%

有了这个表之后,就可以针对每个问题用相应的方法去逐个解决问题。

对error analysis做一个总结
(1)找出所有bad cases
(2)逐一对每个badcase 分析找出原因
(3)分析对应的error 类别
(4)统计不同error类别站总体的比例
(5)发现问题的优先级
(6)构思新的优化方法

1.2 清除错误标注数据

(1)分析错误标注的数据

在训练集中,有人为标记错的样本很正常,因为人也不能百分之百保证正确,但这个标记错分为两类:
a.随机标记错,比如太累了或者没看清,有的时候把猫标成狗,有的时候会把狗标记成猫;
b.系统性错误,比如这批标记的人,就真的没有见过吉娃娃狗,以为他们是猫,于是把所有吉娃娃狗都标记成猫了。

  • 对于随机错误,只要整体的训练样本足够大ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值