MIT 线性代数导论 第三讲:矩阵乘法与逆矩阵

为了以后自己看的明白(●’◡’●),我决定对复杂的计算过程不再用Latex插入数学公式了(记得不熟的实在是太费劲了,还是手写好~)

第三讲的主要内容有两个:

  • 四种矩阵乘法的方式
  • 逆矩阵的概念以及计算方式

矩阵乘法(Matrix multiplication)

矩阵相乘例子:
( A ( m , n ) ) ( B ( n , p ) ) = ( C ( m , p ) ) \begin{pmatrix} A\\ (m,n) \end{pmatrix} \begin{pmatrix} B\\ (n,p) \end{pmatrix} = \begin{pmatrix} C\\ (m,p) \end{pmatrix} (A(m,n))(B(n,p))=(C(m,p))

1、具体到元素的乘法方式

结果矩阵 C C C 的某一个元素 C i j C_{ij} Cij 是由 A A A 矩阵的第 i i i 行元素与 B B B 矩阵的第 j j j 列相乘得到的,使用公式表示如下
C i j = ∑ k = 1 n A i , k B k , j C_{ij}=\sum_{k=1}^{n}A_{i,k}B_{k,j} Cij=k=1nAi,kBk,j

这是我们理解矩阵乘法一般的思想,但是在线性代数中,更好的方式是整体,也就是之前所提到的用向量乘的方式理解矩阵相乘,所以就有了接下来的方式

2.行方法

之前我们提到过行向量乘矩阵,可以理解为矩阵中行向量的线性组合,其实矩阵乘法也是如此,将左侧矩阵 A A A 看作是多个行向量, 那么矩阵乘法就可以看作是多个行向量乘矩阵 B B B ,将结果行向量(行向量乘以矩阵结果仍仍然是行向量)拼在一起就是结果矩阵 C C C
简单来说就是 B B B 中的行向量作为基准,用 A A A 中的行向量对其进行线性组合
例如:

其实就是将矩阵 A A A ,也就是将左侧矩阵的每一个行向量去乘右侧的矩阵,那么每一个 A A A 的行向量乘矩阵 B B B 的结果作为结果矩阵的一个行向量,最后所有的向量乘矩阵计算完成之后就组成结果矩阵了。

3.列方法

同理,如果我们用左侧矩阵 A A A 乘右侧矩阵 B B B 的每一个列向量,其结果就是结果矩阵 C C

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值