MIT 线性代数导论 第十九、二十讲:行列式公式、代数余子式、克拉默法则

这一部分内容没有重要的内容(个人觉得哈,毕竟没有谁会手算行列式之类的吧,所以简单了解一下就好了…反正我已经修过线性代数了哈哈)

本讲的主要内容:

  • 行列式公式
  • 代数余子式的概念以及计算方法
  • 三对角线矩阵行列式规律
  • 矩阵逆的公式
  • 克拉默法则
  • 行列式与体积的关系

行列式公式

利用上一讲里拆分的性质,可以归纳出这个公式,就比如这样:

最终公式为:
d e t A = ∑ ± a 1 α a 1 β a 1 γ . . . a 1 ω , α , β , γ . . . . ω , p e r m ( 1... n ) det \enspace A = \sum \pm a_{1\alpha }a_{1\beta }a_{1\gamma }...a_{1\omega },\alpha ,\beta ,\gamma ....\omega , perm(1...n) detA=±a1αa1βa1γ...a1ωα,β,γ....ω,perm(1...n)
这个求和公式共有 n ! n! n! 项相加,简单来说,行列式的值就是从每列每行中取出一个元素,对这些元素进行累乘,,而对于一个 n n n阶的方阵,这张排列方式有 n ! n! n! 中,对这些项求和,同时要考虑这些项的符号问题,其实就是看将这些排列恢复成从小到大(按列)的标准顺序所需要交换的次数,我们之前的性质里讲到了交换会使得行列式换号,所以如果总的交换次数是奇数,那么就是-1,反之就是1。(比如按列的序号排列是132,那么恢复成标准顺序是123,交换了一次,所以应该是-1,这里其实是有逆序数的概念,不过意思就是这样)

代数余子式(cofactor)

代数余子式用来对原来的方阵进行划分,直接描述:
c o f a c t o r a i j = ± ( ( n − 1 ) m a t r i x w i t h o u t r o w i , c o l u m n j ) cofactor \enspace a_{ij} = \pm((n-1)matrix \enspace without \enspace row_{i}, column_{j}) cofactoraij=±((n1)matrixwithoutrowi,columnj)
关于某个元素的代数余子式,其数值部分等于去掉这个元素所在的行列之后的矩阵的行列式,对于符号,如果 ( i + j ) (i+j) (i+j) 是奇数࿰

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值