题外话
记忆缩写的时候,最好记住它们的全拼,这样就能快速的反应出这个缩写是干什么的。
比如说 API,大家都知道代表接口的意思,但是具体来说接口是什么,就开始含糊其辞了。假如说我们记住 API 的全拼是 application program interface, 就可以直接回答出 API 是应用程序的入口。
1、 TF / IDF
Term Frequency / Inverse Document Frequency
词频 / 逆文档频率
使用场景: 在 elasticsearch version 5 及之前默认的算分算法。之后使用了 BM25 算法。
2、 TF
检索词在一篇文档中出现的频率。
公式: 检索词出现的次数 / 文档的总字数
度量一条查询和结果文档相关性的简单方法:简单的将搜索中每一个词的 TF 进行相加。
TF(鲜美)+ TF(的) + TF(肥羊)
停用词对 TF 的影响
“的”一般情况下属于停用词,虽然在文档中出现了很多次,但是对贡献相关性的得分几乎没有什么用户,不应该考虑他们的 TF。
3、 IDF
IDF 的全拼是 Inverse Document Frequency, 由 Inverse 和 Document Frequency 组成。在理解的时候,可分开来理解。 其中, DF 表示的是检索词在所有文档中出现的频率, I 来修改 DF,意思是说取反的意思,出现的频率越大,对得分贡献越低。
例
倒排列表存储的值的解释
4. 总结
TF / IDF 的 本质就是 TF 求和和 IDF 的加权求和。
参考函数:对数函数 logaN,其中 a > 1,
IDF relevance score = log全部文档数 / 检索词出现过的文档总数
lucene TF/IDF 计算公式