假设检验(一)总体分布已知

总体分布已知时,对总体X的分布中的参数提出的检验问题又称参数假设检验问题

基本概念

  • 原假设: H 0 : θ ∈ Θ 0 H_0:\theta\in\Theta_0 H0:θΘ0

  • 备择假设: H 1 : θ ∈ Θ 1 H_1:\theta\in\Theta_1 H1:θΘ1

  • 拒绝域: W = { ( x 1 , x 2 , … , x n ) : T ( x ) ≥ c } W= \lbrace( x_1,x_2,…,x_n):T(x) \ge c\rbrace W={(x1,x2,,xn):T(x)c}

  • 接受域: W c = { ( x 1 , x 2 , … , x n ) : T ( x ) &lt; c } W^c= \lbrace( x_1,x_2,…,x_n):T(x) &lt; c\rbrace Wc={(x1,x2,,xn):T(x)<c}

  • 拒绝原假设 H 0 H_0 H0 ( x 1 , x 2 , … , x n ) ∈ ( x_1,x_2,…,x_n)\in (x1,x2,,xn) W W W
    其中 T ( x ) T(x) T(x)是能从样本空间划分出拒绝域的统计量,称为检验统计量; c c c是一个待定的常数,称其为检验的临界值

  • 检验函数:拒绝域上的示性函数
    在这里插入图片描述

  • 第一类错误: H 0 H_0 H0为真时,拒绝原假设,其概率为:在这里插入图片描述

  • 第二类错误: H 0 H_0 H0为假时,接受原假设,其概率为:在这里插入图片描述

  • 检验的势(功效):当 H 0 H_0 H0不成立时拒绝它的概率(这回是对的):在这里插入图片描述

  • 势函数(功效函数):检验犯第一类错误的概率:
    在这里插入图片描述
    θ ∈ Θ 0 \theta\in\Theta_0 θΘ0时, g ( θ ) = α ( θ ) g(\theta)=\alpha(\theta) g(θ)=α(θ)
    θ ∈ Θ 1 \theta\in\Theta_1 θΘ1时, g ( θ ) = γ ( θ ) g(\theta)=\gamma(\theta) g(θ)=γ(θ)

  • Neyman-Pearson检验原理:控制犯第一类错误的概率在给定的范围内,寻找检验量使犯第二类错误的概率尽可能小(即使检验的功效尽可能大),即给定一个较小的数 α ∈ ( 0 &lt; α &lt; 1 ) \alpha\in(0&lt;\alpha&lt;1) α(0<α<1),在满足
    P θ { P_\theta\lbrace Pθ{ x ∈ W } = E θ ( φ ( x ) ) ≤ α , x\in W\rbrace=E_\theta(\varphi(x))\leq\alpha, xW}=Eθ(φ(x))α, θ ∈ Θ 0 \theta\in\Theta_0 θΘ0
    的检验函数中,寻找势尽可能大的检验函数

  • 水平为 α \alpha α的检验: φ ( x ) \varphi(x) φ(x)满足 E θ ( φ ( x ) ) ≤ α E_\theta(\varphi(x))\leq\alpha Eθ(φ(x))α,其中 θ ∈ Θ 0 \theta\in\Theta_0 θΘ0 α ( 0 &lt; α &lt; 1 ) \alpha(0&lt;\alpha&lt;1) α(0<α<1)

  • 检验的大小(真实水平):对任何满足 α &lt; α ′ ≤ 1 的 α ′ , φ ( x ) 也 是 水 平 为 α ′ \alpha&lt;\alpha&#x27;\leq1的\alpha&#x27;,\varphi(x)也是水平为\alpha&#x27; α<α1α,φ(x)α的检验,称在这里插入图片描述
    为检验 φ ( x ) \varphi(x) φ(x)的大小或真实水平

正态总体参数的假设检验

单个总体:

前提检验问题检验统计量拒绝域
方差已知 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0 z = x ˉ − μ 0 σ / n z=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} z=σ/n xˉμ0 W = { ( x 1 , x 2 , . . . , x n ) : W=\lbrace(x_1,x_2,...,x_n): W={(x1,x2,...,xn):| z z z|>= z 1 − α 2 z_{1-\frac{\alpha}{2}} z12α
方差未知 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0 t = x ˉ − μ 0 S / n t=\frac{\bar{x}-\mu_0}{S/\sqrt{n}} t=S/n xˉμ0 W = { ( x 1 , x 2 , . . . , x n ) : ∥ t ∥ &gt; = t 1 − α 2 ( n − 1 ) W=\lbrace(x_1,x_2,...,x_n):\|t\|&gt;=t_{1-\frac{\alpha}{2}}(n-1) W={(x1,x2,...,xn):t>=t12α(n1)
均值未知 H 0 : σ 2 = σ 0 2 H_0:\sigma^2=\sigma^2_0 H0:σ2=σ02 χ 2 = ( n − 1 ) S 2 σ 0 2 \chi^2=\frac{(n-1)S^2}{\sigma_0^2} χ2=σ02(n1)S2 W = { χ 2 ⩽ χ α 2 2 ( n − 1 ) } ∪ { χ 2 ⩾ χ 1 − α 2 2 ( n − 1 ) } W=\lbrace\chi^2\leqslant\chi^2_{\frac{\alpha}{2}}(n-1)\rbrace\cup\lbrace\chi^2\geqslant\chi^2_{1-\frac{\alpha}{2}}(n-1)\rbrace W={χ2χ2α2(n1)}{χ2χ12α2(n1)}

##两个正态总体

前提检验统计量
方差已知 z z z~N(0,1)
方差未知但相等t
方差未知,n1=n2=nt
方差未知,不等,样本数不同
两个正态总体方差相等
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值