Skolem范式
意义
在不影响公式的不相容性的前提下,使用Skolem函数,消去前束范式中的存在量词
(化公式为Skolem范式,与原公式在不相容意义下保持等价,即如果G不相容,那么G=G1)
A不相容:对任一解释,A中至少有一个子句为假
A相容:存在一个解释,使A中所有子句为真
规则
例:
Herbrand域
概述
动机:命题逻辑下验证定理是直观的,但是谓词逻辑下验证定理是困难的。(公式G有n个原子,有 2 n 2^n 2n个解释)
我们试图找到:一个比较简单特殊的论域,使得只要在这个论域上该公式是不可满足的,便能保证该公式在任一论域上也是不可满足的
Herbrand域(H域)就具有这样的性质
定义
例:
不含自由变元时:Herbrand域是一阶语言 \mathscr{}\mathcal{} 的不包含变元的项组成的集合,它是项集合的子集