【数理逻辑】预备知识(二)

本文探讨了Skolem范式的意义及其在消除前束范式中存在量词的应用,通过使用Skolem函数保持公式的不相容性不变。同时,深入介绍了Herbrand域的概念,它提供了一个特殊论域,若公式在此域中不可满足,则表明其在任意论域中均不可满足,简化了谓词逻辑下定理的验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Skolem范式

意义

在不影响公式的不相容性的前提下,使用Skolem函数,消去前束范式中的存在量词
(化公式为Skolem范式,与原公式在不相容意义下保持等价,即如果G不相容,那么G=G1)

A不相容:对任一解释,A中至少有一个子句为假
A相容:存在一个解释,使A中所有子句为真

规则

在这里插入图片描述
例:
在这里插入图片描述

Herbrand域

概述

动机:命题逻辑下验证定理是直观的,但是谓词逻辑下验证定理是困难的。(公式G有n个原子,有 2 n 2^n 2n个解释)
我们试图找到:一个比较简单特殊的论域,使得只要在这个论域上该公式是不可满足的,便能保证该公式在任一论域上也是不可满足的
Herbrand域(H域)就具有这样的性质

在这里插入图片描述

定义

在这里插入图片描述
例:
例子1
在这里插入图片描述
在这里插入图片描述

不含自由变元时:Herbrand域是一阶语言 \mathscr{}\mathcal{} 的不包含变元的项组成的集合,它是项集合的子集

参考

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值