AIGC-SD1、原版SD

1、Stable Diffusion 万字长文详解稳定扩散模型

https://zhuanlan.zhihu.com/p/669570827硬核解读Stable Diffusion(完整版)

2、Stable Diffusion 2

版本2相比版本1的更新有:

  • 更新文本编码器为OpenCLIP

  • 默认分辨率支持两种,512和768均支持

  • 提出了一个图像到图像的4倍超分模型(Super-resolution Upscaler Diffusion Models)

  • 提出了深度图到图像的生成模型(Depth-to-Image Diffusion Model)

  • 更新了图像修复模型(Inpainting Diffusion Model)

总的来说,v2相比v1.5变化不大,在开源模型中热度不高。

3、Stable Diffusion XL

https://zhuanlan.zhihu.com/p/650717774

相比之前各个版本的SD,SDXL 的主要改进之处在于:

  • 使用了更大的Unet backbone,大约是之前版本SD的3倍

  • 使用了几个简单但是非常有效的训练技巧,包括图像尺寸条件化策略,图像裁剪参数条件化以及多尺度训练等

  • 增加了一个refinement 模块来改善生成图片的质量

4、SDXL Turbo(实时生图)

实时AI绘画模型SDXL Turbo核心基础知识详解-CSDN博客

SDXL Turbo模型本质上依旧是SDXL模型,其网络架构与SDXL一致,可以理解为一种经过蒸馏训练后的SDXL模型。不过SDXL Turbo模型并不包含Refiner部分,只包含U-Net(Base)、VAE和CLIP Text Encoder三个模块。

SDXL Turbo用的是名为ADD(Adversarial Diffusion Distillation)的蒸馏方案,架构见图6。ADD是两个损失函数来进行蒸馏的,第一个是Adversarial loss(对抗损失),用了一个Discriminator(判别器)来判断生成图片跟真实图片的区别,同时避免其他蒸馏方法中出现的模糊和其他人造的感觉。第二个是采用常规的Distillation loss(蒸馏损失),拿现有的DM(扩散模型)冻结参数后,作为Teacher,去跟Student(目标模型)做Distillation loss,尽量让两者输出一致。SDXL-Turbo的两个loss的ADD方案,一个去确保生成质量(Adversarial loss,GAN的核心思想),一个去确保跟原模型的一致性(Distillation loss)

同样实现实时生图的技术: Latent Consistency Models(LCM)

5、Stable Diffusion 3

一文解读:Stable Diffusion 3究竟厉害在哪里?-CSDN博客

技术路线的解读分为两个方面进行,一是关于flow matching的改进;另一方面是在Diffusion Transformer(Dit)上的具体设计。(待)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值