Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy

[paper]: https://arxiv.org/abs/2004.00448

动机

数据增强DA方法能够提升网络的表现性能,但是目前大多数的数据增强方法只适用于high-level视觉任务,很少有人研究low-level的数据增强方法。

文章对现有的用于SR的数据增强方法进行综合分析,发现过多的丢弃或操作(manipulating)图像像素或特征会破坏恢复的效果,原因是这些操作破坏了图像空间关系信息,而空间信息对SR来说也很重要。

文章提出了一种CutBlur DA方法,主要做法是把LR的patch裁剪下来然后贴到HR图像上,或者把HR的patch贴到LR图像上。这样能够让模型不仅学到如何超分,还能学到在哪里超分,而不是在每个像素位置上都进行盲目的超分。

方法

现有的DA方法

文章用现有的DA方法在EDSR超分模型上进行训练:
在这里插入图片描述
Blend:在图像的每个像素值上加一个常数
RGB permute:三个通道的顺序调换
Cutout:随机选取图像的一个区域,然后丢弃这个区域的内容
Mixup:两张图片进行混叠,如有图像A和B,合成的图像的任一像素点取A或B对应位置像素点的值。
CutMix:随机选取图像的一个区域,然后替换成另外一张图像的内容。
CutMixup:随机选取图像的一个区域,应用Mixup规则。

//文章提出的CutBlur相当于一种CutMix,不同的是它的区域用它的HR或LR版本代替。

Blend和RGB permute只会改变图像的颜色信息,而不会改变结构信息,用在SR上是有作用的,但是其它方法它们都在不同程度上破坏了图像的结构信息,如果直接把它们用在SR上会破坏恢复效果,但是如果小心地应用它们,可能会提升一点表现性能,例如用一个矩形框 cutout 25%图像区域会使原始性能降低0.1db,但是当以0.1%的比例应用并且随机擦除像素而不是矩形区域时,会提高SR表现性能。

作者对不同的DA方法进行大量的实验,筛选出对SR任务有提升效果的DA方法:
在这里插入图片描述
在文章的实验中,把Table 1所有的DA方法混合在一起形成一个DA pool,以p的概率决定是否在input图像上使用DA,如果使用,在DA pool中随机选取一种。

CutBlur

在这里插入图片描述
主要做法:把LR的patch裁剪下来然后贴到HR图像上,或者把HR的patch贴到LR图像上。

LR图像、HR图像公式表示:
在这里插入图片描述
这个过程中要保证LR图像和HR图像大小一致,需要把LR通过双三次上采样s倍,以和HR大小一致,得到 x L R s x_{LR}^s xLRs,CutBlur过程公式化:
在这里插入图片描述
M表示一个二进制掩模图,由0和1组成,HR->LR表示把HR的patch粘贴到LR图像上,而LR->HR表示把LR图像的patch粘贴到HR图像上。

为什么CutBlur对超分有效?
图像内容信息的急剧变化、 图像块的混叠、或者丢失像素之间的相关性会降低SR的性能,一种好的DA方法应该为SR模型提供一种良好的正则。

CutBlur能够满足以上的条件:
1.它仅仅在 HR 和 LR 图像块之间进行裁剪和粘贴,因此能够最小化边界效应。
2.它可以利用整个图像信息,同时由于样本具有随机的HR比率和位置,CutBlur具有正则化效果。

在CutBlur中模型能够学习到什么?
与DA能够防止让分类模型做出过分自信的决策相似,CutBlur能够避免让SR模型对图像过度锐化(而产生伪影),并且只对需要的地方进行超分。
在这里插入图片描述
在这里插入图片描述
在上面两幅图中,我们可以看到,当直接使用HR 图像作为输入时,模型会产生过度锐化的结果(伪影),在边缘位置尤其明显,当使用CutBlur时可以解决这个问题。另外,使用 CutBlur后, 能够大大降低残差图(|HR-SR|)中的数值,即与GT图像之间的误差更小。说明CutBlur能够约束SR模型来区别地将超分辨率应用到图像上,不仅能够学习如何超分,而且还能够学习到在哪里超分,从而为 SR 模型训练提供了有益的正则化效果。

实验

在超分任务上,在SRCNN、CARN、RACN、EDSR四个模型上(模型规模依次变大)使用和不使用文章提出的DA方法在验证集上进行对比。另外,还在不同数量大小的训练集上进行对比,实验结果如下表:
在这里插入图片描述
可以看到DA在规模大的模型上的效果比在规模小的模型上的效果好,在SRCNN上没有提升,在RCAN、EDSR上有提升效果,并且在RCAN上使用一半的数据集就能达到没有DA使用全部数据集训练的效果。

另外,DA还可以避免overfitting的问题,从下图4c、d中看到,在只使用25%数据集时,不使用DA时模型产生了过拟合现象,使用了DA方法后则减轻了该问题。
在这里插入图片描述
在不同的基准数据集上对比:
在这里插入图片描述
在这里插入图片描述
作者还在其它low-level 视觉任务上进行了了实验,具体可以看论文。

总结

文章提出了一种对low-level视觉任务有帮助的DA方法,可以作为一种trick来提升模型的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值