转自百度百科:https://baike.baidu.com/item/%E5%8B%92%E8%B4%9D%E6%A0%BC%E6%B5%8B%E5%BA%A6/8765007?fr=aladdin
在数学中,康托尔集,由德国数学家格奥尔格·康托尔在1883年引入(但由亨利·约翰·斯蒂芬·史密斯在1875年发现[1] ),是位于一条线段上的一些点的集合,具有许多显著和深刻的性质。通过考虑这个集合,康托尔和其他数学家奠定了现代点集拓扑学的基础。虽然康托尔自己用一种一般、抽象的方法定义了这个集合,但是最常见的构造是康托尔三分点集,由去掉一条线段的中间三分之一得出。康托尔自己只附带介绍了三分点集的构造,作为一个更加一般的想法——一个无处稠密的完备集的例子。
取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下两段,再将剩下的两段再分别三等分,各去掉中间一段,剩下更短的四段,……,将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的
点集,称为康托尔点集,记为P。称为康托尔点集的
极限图形长度趋于0,线段数目趋于无穷,实际上相当于一个点集。操作n次后
[2]
边长r=(1/3)
n,
边数N(r)=2
n,
根据公式D=lnN(r)/ln(1/r) , D=ln2/ln3=0.631。
所以康托尔点集分数维是0.631。
康托尔集是由不断去掉线段的中间三分之一而得出。首先从
区间[0,1]中去掉中间的三分之一(/
3,/
3),留下两条线段:[0,/
3] ∪ [/
3,1]。然后,把这两条线段的中间三分之一都去掉,留下四条线段:[0,/
9] ∪ [/
9,/
3] ∪ [/
3,/
9] ∪ [/
9,1]。把这个过程一直进行下去,其中第
n个集合为:

康托尔集就是由所有过程中没有被去掉的区间[0,1]中的点组成。