最优化算法之牛顿法与拟牛顿法学习

转载 2018年04月16日 17:07:21

关于这块的学习,我找到了一位大神从牛顿到拟牛顿详细的公式讲解,看了确实很深刻,后边又对DFP, BFGS,和L-BFGS算法进行解释,可以说对于深入了解牛顿优化算法很有帮助,现将相关连接贴出,供我们参考:

牛顿法与拟牛顿法学习笔记(一)牛顿法

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF...
  • peghoty
  • peghoty
  • 2014-03-24 00:51:18
  • 56010

优化学习率 - 2 - 牛顿法、拟牛顿法

本章总结优化学习率的知识,而前置知识就是“线性回归、梯度下降算法”,因此如果这一章你看的云里雾里甚至连学习率是什么都不知道的话就需要先吧前置知识搞定了。 其他说明       因为本总结的前置知识是“...
  • xueyingxue001
  • xueyingxue001
  • 2016-07-13 15:02:01
  • 908

牛顿法与拟牛顿法学习笔记(四)BFGS 算法

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF...
  • peghoty
  • peghoty
  • 2014-03-24 00:53:04
  • 43820

牛顿法与拟牛顿法

牛顿法求函数的根牛顿法的最初提出是用来求解方程的根的。我们假设点x∗x^*为函数f(x)f(x)的根,那么有f(x∗)=0f(x^*) = 0。现在我们把函数f(x)f(x)在点xkx_k处一阶泰勒展...
  • batuwuhanpei
  • batuwuhanpei
  • 2016-07-21 11:49:43
  • 7523

牛顿法与拟牛顿法学习笔记(二)拟牛顿条件

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF...
  • peghoty
  • peghoty
  • 2014-03-24 00:51:44
  • 25958

无约束最优化方法——牛顿法、拟牛顿法、BFGS、LBFGS

好久没写博客了,今天打开一看csdn终于可以用latex,不用到处去粘贴标签,方便了许多。且先试试效果如何。先讲讲一些优化方法。 最速下降法 牛顿法 拟牛顿法 SR1 BFGS DFP LBFGS 【...
  • lansatiankongxxc
  • lansatiankongxxc
  • 2015-05-20 17:44:32
  • 4363

【数学】梯度下降,牛顿法与拟牛顿法

这三个优化算法,实在是太过经典,以至于很多文章都在说这个算法。这里主要就写一写我自己的感悟吧。剩下的再集成一下别的感觉比较好的微博 梯度下降 牛顿法 拟牛顿法 参考文献...
  • haolexiao
  • haolexiao
  • 2017-03-16 00:20:18
  • 804

算法细节系列(3):梯度下降法,牛顿法,拟牛顿法

算法细节系列(3):梯度下降法,牛顿法,拟牛顿法迭代算法原型话不多说,直接进入主题。在我看来,不管是梯度下降法还是牛顿法,它们都可以归结为一个式子,即 x=ϕ(x) x = \phi(x) 也就是...
  • u014688145
  • u014688145
  • 2016-12-16 09:17:14
  • 3484

牛顿法,拟牛顿法, 共轭梯度法

转载地址:http://blog.csdn.net/luoleicn/article/details/6527049 牛顿法: 1、求解方程。 并不是所有的方程都有求根公式,或者求根公式很复杂,导致求...
  • u011722133
  • u011722133
  • 2016-12-09 13:21:28
  • 541

梯度下降、牛顿法、拟牛顿法

介绍 在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧几里得空间Rn到R的函数的梯度是在Rn某一点最佳的线性...
  • a819825294
  • a819825294
  • 2016-08-10 18:50:23
  • 6804
收藏助手
不良信息举报
您举报文章:最优化算法之牛顿法与拟牛顿法学习
举报原因:
原因补充:

(最多只允许输入30个字)