【最优化算法】基于【MATLAB】的拟牛顿法【Quasi Newton method】分析与推导

10 篇文章 0 订阅 ¥99.90 ¥299.90
5 篇文章 0 订阅
本文介绍了拟牛顿法的概念,旨在解决牛顿法在迭代过程中可能出现的计算量过大问题。通过正定矩阵近似矩阵的逆,简化计算过程,保证算法的收敛速度。内容包括拟牛顿法的原理、步骤、代码实现及测试,讨论了对称性和矩阵更新策略。
摘要由CSDN通过智能技术生成

🚀个人主页:欢迎访问Ali.s的首页

⏰ 最近更新:2022年8月8日

⛽ Java框架学习系列:【Spring】【SpringMVC】【Mybatis】

🔥 Java项目实战系列:【飞机大战】【图书管理系统】

🍭 Java算法21天系列:【查找】【排序】【递归】

⛳ Java基础学习系列:【继承】【封装】【多态】

🏆 通信仿真学习系列:【硬件】【通信】【MATLAB】

🍄 个人简介:通信工程本硕🌈、Java程序员🚴。目前只会CURD😂

💌 点赞 👍 收藏 💗留言 💬 都是我最大的动力💯

评论 127
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ali.s

你的鼓励将是我前进的最好动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值