牛顿法与拟牛顿法学习笔记(一)牛顿法


       机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。


目录链接


(1) 牛顿法

(2) 拟牛顿条件

(3) DFP 算法

(4) BFGS 算法

(5) L-BFGS 算法




作者: peghoty 

出处: http://blog.csdn.net/itplus/article/details/21896453

欢迎转载/分享, 但请务必声明文章出处.


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/peghoty/article/details/21896453
个人分类: 数学天地
上一篇TF-IDF 简介
下一篇牛顿法与拟牛顿法学习笔记(二)拟牛顿条件
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭