【问题描述】
2001年9月11日,一场突发的灾难将纽约世界贸易中心大厦夷为平地,Mr. F曾亲眼目睹了这次灾难。为了纪念“9?11”事件,Mr. F决定自己用水晶来搭建一座双塔。
Mr. F有N块水晶,每块水晶有一个高度,他想用这N块水晶搭建两座有同样高度的塔,使他们成为一座双塔,Mr. F可以从这N块水晶中任取M(1≤M≤N)块来搭建。但是他不知道能否使两座塔有同样的高度,也不知道如果能搭建成一座双塔,这座双塔的最大高度是多少。所以他来请你帮忙。
给定水晶的数量N和每块水晶的高度Hi,你的任务是判断Mr. F能否用这些水晶搭建成一座双塔(两座塔有同样的高度),如果能,则输出所能搭建的双塔的最大高度,否则输出“Impossible”。
【输入格式】
第一行为一个数N,表示水晶的数量。
第二行为N个数,第i个数表示第i个水晶的高度。
【输出格式】
输出仅包含一行,如果能搭成一座双塔,则输出双塔的最大高度,否则输出一个字符串“Impossible”。
【输入样例】
5
1 3 4 5 2
【输出样例】
7
【数据范围】
50%的数据:1≤N≤20, N块水晶高度的总和不超过2000;
70%的数据:1≤N≤100, N块水晶高度的总和不超过2000;
100%的数据:1≤N≤100, N块水晶高度的总和不超过500000。
解题思路(正解):因为已知如果直接求什么设什么是不行的,所以要换个思路来设计状态函数,因为求的双塔高度相同,即高度差为0,所以可以运用动态规划,设f(i,j)表示前i块水晶,选择一些搭出第一座塔与第二座塔的高度差为j时,第一座塔的最大高度,这样设的话,数组只需设f[105][500005],不会超内存,但可以发现高度差j可能为负数,对此,可以运用宏定义将负数j平移为正数。同样,分析第i块水晶,可以不搭,可以搭在第一座塔上,也可以搭在第二座塔上,所以状态转移方程为f(i,j)=max(f(i-1,j),f(i-1,j-h[i]),f(i-1,j+h[i])+h[i])。边界条件为f(0,0)=0,即不选水晶,两座塔的高度差为0,求塔高也都为0。需要注意的是,因为此种设法分析前i块水晶时,仍只与前i-1块水晶有关,所以也可以使用滚动数组来优化空间,但又为了保证正确,可以用二维滚动数组,在枚举高度差j时,可以进行优化,先在输入时计算出前i块水晶的高度和sum[i](前缀和),则枚举第i块水晶时,高度差最多为sum[i],最少为-sum[i]。如果最后f(N%2,0)是小于或等于0的,说明不存在双塔,需输出“Impossible”。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
#define f(x,y) d[(x)][(y)+1000000] //宏定义,注意建议平移多一点,不然可能有的数据会出问题
using namespace std;
const int maxn=105;
const int inf=1000000010;
int N,sum=0;
int h[maxn],s[maxn];
/*
f(i,j)表示前i块水晶,选择一些搭出第一座塔与第二座塔的高度差为j时,第一座塔的最大高度
f(i,j)=max(f(i-1,j),f(i-1,j-h[i]),f(i-1,j+h[i])+h[i])
边界:f(0,0)=0
*/
int d[2][2000005]; //二维滚动数组
void solve() //动态规划
{
for(int i=0;i<2;i++)
for(int j=-sum;j<=sum;j++)
f(i,j)=-inf; //初始化
f(0,0)=0; //边界
for(int i=1;i<=N;i++)
{
for(int j=-s[i];j<=s[i];j++)
f(i%2,j)=-inf;
for(int j=-s[i];j<=s[i];j++)
{
int t1=f((i-1)%2,j),t2=f((i-1)%2,j-h[i]),t3=f((i-1)%2,j+h[i])+h[i];
f(i%2,j)=max(t1,max(t2,t3));
}
}
if(f(N%2,0)>0) printf("%d\n",f(N%2,0));
else printf("Impossible\n");
}
int main()
{
scanf("%d",&N);
s[0]=0;
for(int i=1;i<=N;i++)
{
scanf("%d",&h[i]);
s[i]=s[i-1]+h[i]; //预处理,计算前缀和
sum+=h[i]; //计算高度差的范围
}
solve();
return 0;
}
第二种,麻烦点想,但好处是省空间
一看就跟背包有些类似,实际上确实是个很简单的DP
用dp[i][j] 表示的是前i个水晶,凑成的两塔高度差为j的较低塔的最大高度。
那么它的状态可能由四种情况转化而来
1.该物品没用上
2.低塔加上了该物品还是低塔
3.高塔加上了该物品边的更高了
4.低塔加上了该物品变成了高塔
这里我们可以画几个图,就清晰许多了
转移方程请看代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <map>
#define MAXN 777
#define MAXM 400005
#define INF 1000000007
using namespace std;
int n;
int f[111][2222], c[111];
int main()
{
scanf("%d", &n);
int sum = 0;
for(int i = 1; i <= n; i++)
{
scanf("%d", &c[i]);
sum += c[i];
}
memset(f, -1, sizeof(f));
f[0][0] = 0;
for(int i = 1; i <= n; i++)
{
for(int j = 0; j <= sum; j++)
{
if(f[i - 1][j] != -1) f[i][j] = f[i - 1][j];
if(j + c[i] <= sum && f[i - 1][j + c[i]] != -1)
f[i][j] = max(f[i][j], f[i - 1][j + c[i]] + c[i]);
if(j >= c[i] && f[i - 1][j - c[i]] != -1)
f[i][j] = max(f[i][j], f[i - 1][j - c[i]]);
if(c[i] > j && f[i - 1][c[i] - j] != -1)
f[i][j] = max(f[i][j], f[i - 1][c[i] - j] + c[i] - j);
}
}
if(f[n][0] > 0) printf("%d\n", f[n][0]);
else printf("Impossible\n");
return 0;
}