BZOJ 3238 [Ahoi2013]差异 后缀数组+单调栈

3238: [Ahoi2013]差异

Time Limit: 20 Sec   Memory Limit: 512 MB
Submit: 3822   Solved: 1735
[ Submit][ Status][ Discuss]

Description

Input

一行,一个字符串S

Output

 

一行,一个整数,表示所求值

Sample Input

cacao

Sample Output


54

HINT



2<=N<=500000,S由小写英文字母组成



先用后缀数组求出height数组。

接下来,只需要求所有后缀lcp的和就可以了,显然可以通过height数组O(n^2)枚举,然而会爆炸。

这里,学到了一个神奇的数据结构——单调栈,可以在线性时间内找到一个数向左、向右第一个大于(小于)它自己的位置。这样,只需要对每个height求出它的管辖范围,在这个范围内的height值都不小于当前位置的height值,之后累加即可。

单调栈学习页面

#include <cstdio>
#include <string.h>
#include <algorithm>
#include <stack>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int maxn=500005,inf=0x3f3f3f3f;  
const ll llinf=0x3f3f3f3f3f3f3f3f;   
ll wa[maxn],wb[maxn],wv[maxn],ws[maxn],sa[maxn],ranki[maxn],height[maxn];
char a[maxn];
ll s[maxn],l[maxn],r[maxn],st[maxn];

ll cmp(ll *r,ll a,ll b,ll l) {
	return r[a]==r[b]&&r[a+l]==r[b+l];
}

void build(ll *r,ll *sa,ll n,ll m) {
	ll i,j,k,p,*x=wa,*y=wb,*t;
	for (i=0;i<m;i++) ws[i]=0;
	for (i=0;i<n;i++) ws[x[i]=r[i]]++;
	for (i=0;i<m;i++) ws[i]+=ws[i-1];
	for (i=n-1;i>=0;i--) 
	    sa[--ws[x[i]]]=i;
	    
	for (j=1,p=1;p<n;j*=2,m=p) {
		for (p=0,i=n-j;i<n;i++) 
		    y[p++]=i;
		for (i=0;i<n;i++) 
		    if (sa[i]>=j) y[p++]=sa[i]-j;
		for (i=0;i<n;i++) 
		    wv[i]=x[y[i]];
		for (i=0;i<m;i++) ws[i]=0;
		for (i=0;i<n;i++) 
		    ws[wv[i]]++;
		for (i=1;i<m;i++) ws[i]+=ws[i-1];
		for (i=n-1;i>=0;i--) 
		    sa[--ws[wv[i]]]=y[i];
		t=x;x=y;y=t;
		p=1;x[sa[0]]=0;
		for (i=1;i<n;i++) 
		    x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
	}

	for (i=1;i<n;i++) ranki[sa[i]]=i;
	k=0; 
	for (i=0;i<n-1;height[ranki[i++]]=k) {
		if (k) k--;
		for (j=sa[ranki[i]-1];r[i+k]==r[j+k];k++);
	}
}

int main() {
	scanf("%s",a);  
    ll n=strlen(a),i,j;  
    for (i=0;i<n;i++) {  
        s[i]=a[i]-'a'+1;  
    }  
    s[n]=0;  
    build(s,sa,n+1,27);  
    ll ans=n*(n+1)/2*(n-1);
    ll top=0;
    for (i=2;i<=n;i++) {
        while (top&&height[i]<height[st[top]]) 
			r[st[top--]]=i-1;
        st[++top]=i;
    }
    while (top) r[st[top--]]=n;
    for (i=n;i>=2;i--) {
        while (top&&height[i]<=height[st[top]]) 
			l[st[top--]]=i+1;
        st[++top]=i;
    }
    while (top) l[st[top--]]=2;
    for (i=2;i<=n;i++)
        ans-=2ll*height[i]*(i-l[i]+1)*(r[i]-i+1); 
    printf("%lld\n",ans);
	return 0;
}

好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之前所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当前遍历到第 $i$ 个湖,我们需要在之前的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的前驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当前 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个前驱湖,答案加一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值