3238: [Ahoi2013]差异
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 3822 Solved: 1735
[ Submit][ Status][ Discuss]
Description
Input
一行,一个字符串S
Output
一行,一个整数,表示所求值
Sample Input
cacao
Sample Output
54
HINT
2<=N<=500000,S由小写英文字母组成
先用后缀数组求出height数组。
接下来,只需要求所有后缀lcp的和就可以了,显然可以通过height数组O(n^2)枚举,然而会爆炸。
这里,学到了一个神奇的数据结构——单调栈,可以在线性时间内找到一个数向左、向右第一个大于(小于)它自己的位置。这样,只需要对每个height求出它的管辖范围,在这个范围内的height值都不小于当前位置的height值,之后累加即可。
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <stack>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int maxn=500005,inf=0x3f3f3f3f;
const ll llinf=0x3f3f3f3f3f3f3f3f;
ll wa[maxn],wb[maxn],wv[maxn],ws[maxn],sa[maxn],ranki[maxn],height[maxn];
char a[maxn];
ll s[maxn],l[maxn],r[maxn],st[maxn];
ll cmp(ll *r,ll a,ll b,ll l) {
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void build(ll *r,ll *sa,ll n,ll m) {
ll i,j,k,p,*x=wa,*y=wb,*t;
for (i=0;i<m;i++) ws[i]=0;
for (i=0;i<n;i++) ws[x[i]=r[i]]++;
for (i=0;i<m;i++) ws[i]+=ws[i-1];
for (i=n-1;i>=0;i--)
sa[--ws[x[i]]]=i;
for (j=1,p=1;p<n;j*=2,m=p) {
for (p=0,i=n-j;i<n;i++)
y[p++]=i;
for (i=0;i<n;i++)
if (sa[i]>=j) y[p++]=sa[i]-j;
for (i=0;i<n;i++)
wv[i]=x[y[i]];
for (i=0;i<m;i++) ws[i]=0;
for (i=0;i<n;i++)
ws[wv[i]]++;
for (i=1;i<m;i++) ws[i]+=ws[i-1];
for (i=n-1;i>=0;i--)
sa[--ws[wv[i]]]=y[i];
t=x;x=y;y=t;
p=1;x[sa[0]]=0;
for (i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
}
for (i=1;i<n;i++) ranki[sa[i]]=i;
k=0;
for (i=0;i<n-1;height[ranki[i++]]=k) {
if (k) k--;
for (j=sa[ranki[i]-1];r[i+k]==r[j+k];k++);
}
}
int main() {
scanf("%s",a);
ll n=strlen(a),i,j;
for (i=0;i<n;i++) {
s[i]=a[i]-'a'+1;
}
s[n]=0;
build(s,sa,n+1,27);
ll ans=n*(n+1)/2*(n-1);
ll top=0;
for (i=2;i<=n;i++) {
while (top&&height[i]<height[st[top]])
r[st[top--]]=i-1;
st[++top]=i;
}
while (top) r[st[top--]]=n;
for (i=n;i>=2;i--) {
while (top&&height[i]<=height[st[top]])
l[st[top--]]=i+1;
st[++top]=i;
}
while (top) l[st[top--]]=2;
for (i=2;i<=n;i++)
ans-=2ll*height[i]*(i-l[i]+1)*(r[i]-i+1);
printf("%lld\n",ans);
return 0;
}