matlab 稀疏矩阵求 特征值

本文探讨了在MATLAB中计算全矩阵和稀疏矩阵的特征值问题。针对非对称稀疏矩阵,`eig`函数不适用,而`eigs`函数虽然能处理但限制于求取最大特征值。当需要计算最小特征值时,如尝试对大规模稀疏矩阵B使用`eigs(B,5,'sm')`会出现错误。错误提示涉及`LUfactorAminusSigmaB`和单数运算符。解决此类问题的方法及提高计算效率的策略尚未明确。" 93176074,5035079,使用Filament进行IBL光照,"['图形渲染', '光照模型', '图像处理']
摘要由CSDN通过智能技术生成

全矩阵与稀疏矩阵的互换

A = [1 0 0 0 0; 0 5 0 0 0; 0 0 9 0 0; 0 0 0 3 0; 0 0 0 0 6]

A =


     1     0     0     0     0
     0     5     0     0     0
     0     0     9     0     0
     0     0     0     3     0
     0     0     0     0     6


S = sparse(A)

S =


   (1,1)        1
   (2,2)        5
   (3,3)        9
   (4,4)        3
   (5,5)        6


F = full(S)

F =


     1     0     0     0     0
     0     5     0     0     0
     0     0     9     0     0
     0     0     0     3     0
     0     0     0     0     6


尝试用eig 和eigs 函数求取全矩阵和稀疏矩阵的特征值

发现eig 对于非对称的稀疏矩阵不可用,

而eigs 只能给出矩阵最大的六个特征值。


如何提高matlab 计算矩阵特征值的效率呢?

当矩阵规模较大时,(30000*30000)?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值