torch.nn.Conv2d()函数详解

转自:https://blog.csdn.net/m0_37586991/article/details/87855342

import torch

x = torch.randn(2,1,7,3)
conv = torch.nn.Conv2d(1,8,(2,3))
res = conv(x)

print(res.shape)    # shape = (2, 8, 6, 1)

输入:
x
[batch_size,channels,height_1,width_1]
batch_size 一个batch中样例的个数 2
channels 通道数,也就是当前层的深度 1
height_1, 图片的高 7
width_1, 图片的宽 3

Conv2d的参数
[channels, output,height_2,width_2]
channels, 通道数,和上面保持一致,也就是当前层的深度 1
output 输出的深度 8
height_2,过滤器filter的高 2
width_2,过滤器filter的宽 3

输出:
res
[batch_size, output,height_3,width_3]
batch_size,一个batch中样例的个数, 同上 2
output 输出的深度 8
height_3,卷积结构的高度 6=height_1-height_2+1=7-2+1
width_3, 卷积结果的宽度 1=width_1-width_2+1=3-3+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值