转自:https://blog.csdn.net/m0_37586991/article/details/87855342
import torch
x = torch.randn(2,1,7,3)
conv = torch.nn.Conv2d(1,8,(2,3))
res = conv(x)
print(res.shape) # shape = (2, 8, 6, 1)
输入:
x
[batch_size,channels,height_1,width_1]
batch_size 一个batch中样例的个数 2
channels 通道数,也就是当前层的深度 1
height_1, 图片的高 7
width_1, 图片的宽 3
Conv2d的参数
[channels, output,height_2,width_2]
channels, 通道数,和上面保持一致,也就是当前层的深度 1
output 输出的深度 8
height_2,过滤器filter的高 2
width_2,过滤器filter的宽 3
输出:
res
[batch_size, output,height_3,width_3]
batch_size,一个batch中样例的个数, 同上 2
output 输出的深度 8
height_3,卷积结构的高度 6=height_1-height_2+1=7-2+1
width_3, 卷积结果的宽度 1=width_1-width_2+1=3-3+1