使用Matlab 画 ROC需要哪些数据

本文介绍如何使用Matlab自带的plotroc()函数绘制ROC曲线,包括单个及多个分类器性能对比的方法,并提供了SVM分类结果的具体实例。

使用分类器进行分类后,需要绘制出ROC曲线来描述该分类器的性能。Matlab中自带的函数plotroc(),可以帮助我们来绘制ROC曲线。先来看一下这个函数

 

 

plotroc(targets,outputs) 这个函数是绘制一个ROC

plotroc(targets1,outputs1,'name1',targets2,outputs2,'name2',...) 这个函数是绘制多个ROC,这里要说的是,这个函数所谓的绘制多个ROC并不是将多个ROC绘制在同一个图中,而是对于每个ROC分别绘制在子图上

 

解释下这两个参数 target是训练集标签,output是分类结果矩阵。为了方便大家的理解,下面我以SVM为例,上图给大家解释一下,在Matlab中绘制ROC需要哪些数据。

上图是SVM分类后的文件,其中的train.txt中包括了样本的标签和特征(train_scale.txt是归一化的文件),result_svm.txt文件就是分类后的文件,我们来看一下

我们可以发现有一些列的概率值,这些就是我们需要的数据(注:结果中的标签是不需要的

下面将测试集中的标签和结果中的概率导入到matlab中(注:如果只有两类需要将-1的标签改为0),导入到Matlab的结果如图

然后就可以运行 

plotroc(target,output);

运行结果如图所示

再看看多个ROC的情况

plotroc(target,output,'name1',target,output,'name2');

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值