使用分类器进行分类后,需要绘制出ROC曲线来描述该分类器的性能。Matlab中自带的函数plotroc(),可以帮助我们来绘制ROC曲线。先来看一下这个函数
plotroc(targets,outputs)
这个函数是绘制一个ROC
plotroc(targets1,outputs1,'name1',targets2,outputs2,'name2',...)
这个函数是绘制多个ROC,这里要说的是,这个函数所谓的绘制多个ROC并不是将多个ROC绘制在同一个图中,而是对于每个ROC分别绘制在子图上
解释下这两个参数 target是训练集标签,output是分类结果矩阵。为了方便大家的理解,下面我以SVM为例,上图给大家解释一下,在Matlab中绘制ROC需要哪些数据。
上图是SVM分类后的文件,其中的train.txt中包括了样本的标签和特征(train_scale.txt是归一化的文件),result_svm.txt文件就是分类后的文件,我们来看一下
我们可以发现有一些列的概率值,这些就是我们需要的数据(注:结果中的标签是不需要的)
下面将测试集中的标签和结果中的概率导入到matlab中(注:如果只有两类需要将-1的标签改为0),导入到Matlab的结果如图
然后就可以运行
plotroc(target,output);
运行结果如图所示
再看看多个ROC的情况
plotroc(target,output,'name1',target,output,'name2');