数学篇 - 微分(求导)的基本法则与行列式

一、常数及基本函数的求导规则

常数的导数: ( C ) ′ = 0 (C)'=0 (C)=0

幂函数的导数: ( x μ ) ′ = μ x μ − 1 (x^\mu)'=\mu x^{\mu-1} (xμ)=μxμ1

三角函数正弦、余弦函数的导数: ( s i n   x ) ′ = c o s   x (sin\ x)'=cos\ x (sin x)=cos x ( c o s   x ) ′ = − s i n   x (cos\ x)'=-sin\ x (cos x)=sin x

三角函数正切、余切函数的导数: ( t a n   x ) ′ = s e c 2   x (tan\ x)'=sec^2\ x (tan x)=sec2 x ( c o t   x ) ′ = − c s c 2   x (cot\ x)'=-csc^2\ x (cot x)=csc2 x

三角函数正割、余割函数的导数: ( s e c   x ) ′ = s e c   x   t a n   x (sec\ x)'=sec\ x\ tan\ x (sec x)=sec x tan x ( c s c   x ) ′ = − c s c   x   c o t   x (csc\ x)'=-csc\ x\ cot\ x (csc x)=csc x cot x

指数函数的导数: ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna, (a>0, a≠1)

自然指数函数的导数: ( e x ) ′ = e x (e^x)'=e^x (ex)=ex

对数函数的导数: ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1, (a>0, a≠1)

自然对数函数的导数: ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)=x1

反三角函数的反正弦、反余弦函数的导数: ( a r c s i n   x ) ′ = 1 1 − x 2 (arcsin\ x)'=\frac{1}{\sqrt{1-x^2}} (arcsin x)=1x2 1 ( a r c c o s   x ) ′ = − 1 1 − x 2 (arccos\ x)'=-\frac{1}{\sqrt{1-x^2}} (arccos x)=1x2 1

反三角函数的反正切、反余弦函切的导数: ( a r c t a n   x ) ′ = 1 1 + x 2 (arctan\ x)'=\frac{1}{1+x^2} (arctan x)=1+x21 ( a r c c o t   x ) ′ = − 1 1 + x 2 (arccot\ x)'=-\frac{1}{1+x^2} (arccot x)=1+x21

二、函数加减乘除的求导规则:

  1. 两函数之和(差)的导数等于两函数导数之和(差): u ± v ′ = u ′ ± v ′ u±v'=u'±v' u±v=u±v
  2. 常数与函数之积的导数等于常数与该函数的导数之积: ( C u ) ′ = C u ′ (Cu)'=Cu' (Cu)=Cu
  3. 两函数之积的导数等于函数1的导数与函数2之积加上函数1与函数2的导数之积: ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
  4. 两函数之商的导数等于函数1的导数与函数2之积加上函数1与函数2的导数之积,并将结果除以函数2的平方: ( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)=v2uvuv, (v≠0)

三、反函数的求导规则

反函数是原函数关于y=x对称的函数。

[ f − 1 ( x ) ] ′ = 1 f ′ ( y ) [f^{-1}(x)]'=\frac{1}{f'(y)} [f1(x)]=f(y)1, 或者另一种写法: d y d x = 1 d x d y \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1

四、复合函数的求导规则

对于复合函数: y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)],其导数为 d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}·\frac{du}{dx} dxdy=dudydxdu, 或者表示为 y ′ ( x ) = f ′ ( u ) ⋅ g ′ ( x ) y'(x)=f'(u)·g'(x) y(x)=f(u)g(x)

五、偏导数

导数是针对一元函数,而偏导数则针对的是多元函数。

对于多元函数的某一个自变量进行求导就是基于这个自变量的偏导数,偏导数反映的是函数沿着坐标轴方向的变化率。

举几个例子:

  1. 有二元二次函数 z = x 2 + 3 x y + y 2 z=x^2+3xy+y^2 z=x2+3xy+y2在点(1,2)处的偏导数,则 ∂ z ∂ x = 2 x + 3 y ,   ∂ z ∂ y = 3 x + 2 y \frac{\partial z}{\partial x}=2x+3y, \ \frac{\partial z}{\partial y}=3x+2y xz=2x+3y, yz=3x+2y,带入结果知函数z对x的偏导数是 ∂ z ∂ x ∣ x = 1 , y = 2 = 8 \frac{\partial z}{\partial x}\bigg|_{x=1,y=2}=8 xz x=1,y=2=8,函数z对y的偏导数是 ∂ z ∂ y ∣ x = 1 , y = 2 = 7 \frac{\partial z}{\partial y}\bigg|_{x=1,y=2}=7 yz x=1,y=2=7

  2. z = x 2 s i n 2 y z=x^2sin2y z=x2sin2y对于x的偏导数为: ∂ z ∂ x = 2 x s i n 2 y \frac{\partial z}{\partial x}=2xsin2y xz=2xsin2y,对于y的偏导数为: ∂ z ∂ y = 2 x 2 c o s 2 y \frac{\partial z}{\partial y}=2x^2cos2y yz=2x2cos2y

  3. r = x 2 + y 2 + z 2 r=\sqrt{x^2+y^2+z^2} r=x2+y2+z2 对于x的偏导数为: ∂ r ∂ x = [ ( x 2 + y 2 + z 2 ) 1 2 ] ′ = 1 2 1 x 2 + y 2 + z 2 2 x = x r \frac{\partial r}{\partial x}=[(x^2+y^2+z^2)^\frac{1}{2}]'=\frac{1}{2}\frac{1}{\sqrt{x^2+y^2+z^2}}2x=\frac{x}{r} xr=[(x2+y2+z2)21]=21x2+y2+z2 12x=rx

    对于y的偏导数为: ∂ r ∂ y = y r \frac{\partial r}{\partial y}=\frac{y}{r} yr=ry,对于z的偏导数为: ∂ r ∂ z = z r \frac{\partial r}{\partial z}=\frac{z}{r} zr=rz.

对于一阶偏导数: ∂ z ∂ x = f x ( x , y ) \frac{\partial z}{\partial x}=f_{x}(x,y) xz=fx(x,y), ∂ z ∂ y = f y ( x , y ) \frac{\partial z}{\partial y}=f_{y}(x,y) yz=fy(x,y)

对于二阶偏导数: ∂ ∂ x ( ∂ z ∂ x ) = ∂ 2 z ∂ x 2 = f x x ( x , y ) \frac{\partial}{\partial x}(\frac{\partial z}{\partial x}) = \frac{\partial^2 z}{\partial x^2} = f_{xx}(x,y) x(xz)=x22z=fxx(x,y), ∂ ∂ y ( ∂ z ∂ x ) = ∂ 2 z ∂ x ∂ y = f x y ( x , y ) \frac{\partial}{\partial y}(\frac{\partial z}{\partial x}) = \frac{\partial^2 z}{\partial x \partial y} = f_{xy}(x,y) y(xz)=xy2z=fxy(x,y),

∂ ∂ x ( ∂ z ∂ y ) = ∂ 2 z ∂ y ∂ x = f y x ( x , y ) \frac{\partial}{\partial x}(\frac{\partial z}{\partial y}) = \frac{\partial^2 z}{\partial y \partial x} = f_{yx}(x,y) x(yz)=yx2z=fyx(x,y), ∂ ∂ y ( ∂ z ∂ y ) = ∂ 2 z ∂ y 2 = f y y ( x , y ) \frac{\partial}{\partial y}(\frac{\partial z}{\partial y}) = \frac{\partial^2 z}{\partial y^2} = f_{yy}(x,y) y(yz)=y22z=fyy(x,y),其中第二和第三叫做混合偏导数。

则有: ∂ 2 z ∂ x ∂ y \frac{\partial^2 z}{\partial x \partial y} xy2z = ∂ 2 z ∂ y ∂ x \frac{\partial^2 z}{\partial y \partial x} yx2z,即二阶或高阶混合偏导数在区域D内连续,则必相等。

拉普拉斯(Laplace)方程: ∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0 x22z+y22z=0, ∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 + ∂ 2 z ∂ z 2 = 0 \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} + \frac{\partial^2 z}{\partial z^2} = 0 x22z+y22z+z22z=0

六、行列式

行列式常用于求解n元一次方程组,二元方程组对应于二阶行列式,多元方程组对应于多阶行列式。

举个例子:使用二阶行列式求解一个二元一次方程组:
{ 2 x + 3 y = 8 x − 2 y = − 3 \begin{equation} \left\{ \begin{array}{lr} 2x+3y=8 \\ x-2y=-3 \end{array} \right. \end{equation} {2x+3y=8x2y=3
分别取x和y的系数作为矩阵D, 常数项替换第一列为D1, 常数项替换第二列为D2:
在这里插入图片描述

对于三阶行列式的求解:
在这里插入图片描述
即主对角线之和 - 次对角线之和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一生要强的Zz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值