1.优化选取枢轴
防止在第一次循环后,整个序列没有实质性的变化,如例子中的序列,则采用三数取中法(median-of-three)。即取三个关键字先进行排序,将蹭数作为枢轴,一般是取左端、右端和中间三个数,也可以随机选取。也有九数取中(median-of-nine)。
优化代码块如下:
int Partition(int *p, int low, int high){
int pivotkey;
//以下代码是增加的对选取枢轴的优化
int m = low + (high - low) / 2;//计算数组中间的元素的下标
if (*(p + low) > *(p + high)){//以下3个if语句是为了保证,在low,m,high三个下标中,使得*(p+low)的值最小
swap(*(p + low), *(p + high));
}
if (*(p + m) > *(p + high)){
swap(*(p + m), *(p + high));
}
if (*(p + m) > *(p + low)){
swap(*(p + m), *(p + low));
}
//以下代码是增加的对选取枢轴的优化
pivotkey = *(p + low);//设置传进来的数组中第一个数为枢轴变量
while (low < high){
while (low < high&&*(p + high) >= pivotkey){//如果low<high,且*(p+high)>=枢轴变量,则--high
--high;
}
swap(*(p + low), *(p + high));//交换值
while (low < high&&*(p + low) <= pivotkey){
++low;
}
swap(*(p + low), *(p + high));
}
return low;//返回枢轴
}
2.优化不必要的交换
在进行循环时,可以先将枢轴值保存起来,将交换改为赋值
优化代码块如下:
int Partition(int *p, int low, int high){
int pivotkey;
pivotkey = *(p + low);//设置传进来的数组中第一个数为枢轴变量
int tmp;//来保存枢轴变量
tmp = pivotkey;
while (low < high){
while (low < high&&*(p + high) >= pivotkey){//如果low<high,且*(p+high)>=枢轴变量,则--high
--high;
}
*(p + low) = *(p + high);//采用替换面不是交换的方式进行操作
while (low < high&&*(p + low) <= pivotkey){
++low;
}
*(p + high) = *(p + low);//采用替换面不是交换的方式进行操作
}
*(p + low) = tmp;//将枢轴数值替换给*(p+low)
return low;//返回枢轴
}
3.优化小数组时的排序方案
在数组元素个数小于50时,可以选择直接用插入排序,这样就能保证最大化地利用两种排序的优势来完成排序工作。
优化代码块如下:
#define MAX_LENGTH_INSERT_SORT 50//设置一个分界点
void QSort(int *p,int low,int high){
int pivot;//设置枢轴,即在这个位置,它左边的值比它小,右边的值比它大
if (low < high&&(high-low)>MAX_LENGTH_INSERT_SORT){//如果数组元素个数大于50,采用快速排序
pivot = Partition(p+low, 0, high-low);//用来初步排序
QSort(p+low, 0, pivot -1-low);//递归调用自己,这里传的p+low,是新截断数组第一个位置的指针,所以后面的要用0t pivot-1-low
QSort(p + pivot + 1, 0, high - pivot - 1);
}
else{//否则采用插入排序
InsertSort(a)
}
}
4.优化递归操作
实际代码就不上了,改的时间有bug。。。