[2025CVPR]Multi-Layer Visual Feature Fusion in Multimodal LLMs 多模态大语言模型中的多层视觉特征融合

 深入解析:多模态大语言模型中的多层视觉特征融合——原理、实践与最佳方案

论文:Multi-Layer Visual Feature Fusion in Multimodal LLMs: Methods, Analysis, and Best Practices

一、问题本质:为什么需要多层视觉特征?

当前多模态大语言模型(MLLMs)存在两大核心痛点:

  1. 视觉层选择随意性​:现有方法(如MiniCPM、LLaVA)常仅用最后一层特征,但浅层(纹理)和深层(语义)特征各有价值
  2. 融合策略缺乏系统研究​:特征该插入LLM输入层还是中间层?是否需要额外融合模块?

下图揭示不同视觉层特征的显著差异:

Figure 1. Different Visual Features and Fusion Paradigms. (a) and (b) illustrate the acquisition methods for single-l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值