树的递归遍历
先序遍历:T=T(根)+T(左)+T(右);
中序遍历:T=T(左)+T(根)+T(右);
后序遍历:T=T(左)+T(右)+T(根);
以上遵循递归的运行方式每最深层返回值即对应 遍历
哎,递归,,,,,
表示不太懂,很难想到这里,,,看紫书debug才慢慢懂,心塞塞,再多看几次练几次应该就会好点吧,递归一直是弱项
#include<iostream>
#include<string>
#include<sstream>
#include<algorithm>
using namespace std;
// 因为各个结点的权值各不相同且都是正整数,直接用权值作为结点编号
const int maxv = 10000 + 10;
int in_order[maxv], post_order[maxv], lch[maxv], rch[maxv];
int n;
bool read_list(int* a) {
string line;
if(!getline(cin, line)) return false;
stringstream ss(line);
n = 0;
int x;
while(ss >> x) a[n++] = x;
return n > 0;
}
// 把in_order[L1..R1]和post_order[L2..R2]建成一棵二叉树,返回树根
int build(int L1, int R1, int L2, int R2) {
if(L1 > R1) return 0; // 空树
int root = post_order[R2];
int p = L1;
while(in_order[p] != root) p++;
int cnt = p-L1; // 左子树的结点个数
lch[root] = build(L1, p-1, L2, L2+cnt-1);//根左叉的数
rch[root] = build(p+1, R1, L2+cnt, R2-1);//根右叉的数
return root;
}
int best, best_sum; // 目前为止的最优解和对应的权和
void dfs(int u, int sum) {
sum += u;
if(!lch[u] && !rch[u]) { // 叶子
if(sum < best_sum || (sum == best_sum && u < best)) { best = u; best_sum = sum; }
}
if(lch[u]) dfs(lch[u], sum);
if(rch[u]) dfs(rch[u], sum);
}
int main() {
while(read_list(in_order)) {
read_list(post_order);
build(0, n-1, 0, n-1);
best_sum = 1000000000;
dfs(post_order[n-1], 0);
cout << best << "\n";
}
return 0;
}