蛋白+小分子配体md(详细保姆教程)

本文提供了一个详细的GROMACS模拟蛋白和小分子配体的教程,涵盖从生成小分子到模拟的全过程。涉及GROMACS中文教程链接, Charmm GUI使用,6kyk/PDBID的处理,力场下载,Gro/Top文件编辑,以及能量最小化和NPT平衡模拟。在模拟过程中还解决了报错问题,并分享了在深圳超算的运行速度和存储大小的经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

继续搬一点近期飞书文档模拟的到博客里

参考博客:

  • Gromac中文教程:https://jerkwin.github.io/GMX/GMXtut-5/#%E6%A6%82%E8%BF%B0
  • https://www.jianshu.com/p/b10fe4b4af11
  • https://www.bilibili.com/read/cv6496041/

生成小分子过程

  • 生成:charm gui 官网:https://charmm-gui.org/?doc=input/pdbreader&step=0
    • PDBID:6kyk,6kyh。生成时注意选择第一个。
    •  

  • 在GNP文件中的mol2
  • CGenFF上传 mol2:https://cgenff.umaryland.edu/userAccount/userLogin.php#20220227_5/6kyk_gnp.err。
  • 下载str,生成prm、itp、pdb
python cgenff_charmm2gmx_py3_nx2.py GNP GNP.mol2 gnp.str charmm36-mar2019.ff
  • 注意NetworkX版本,若是最新版不一致,将self.G.node替换成新版语法self.G.nodes
  • 力场下载地址:http://mackerell.umaryland.edu/charmm_ff.shtml#charmm
  • 生成gro文件

gmx pdb2gmx -ignh -ff charmm36-mar2019 -f 6kyh_mg.pdb -o 6kyh.gro -p 6kyh.top -water tip3p

gmx editconf -f gnp_ini.pdb -o gnp.gro

  • 将小分子gro坐标添加进6kyh.gro,修改gro原子数,32399 prm,itp文件include到6kyh.top,,增加GNP 1到top。一定要注意include prm文件的位置,一定要在所有的分子itp文件之前,力场文件之下,否则会导致GROMACS无法识别加入的小分子。
# add gro , +49

# vim 6kyh.top,注意位置,prm一定要在所有的itp之前,而在力场之下。

; Include ligand topology

#include "gnp.prm"

#include "gnp.itp"

模拟

  1. 水盒子

gmx editconf -f 6kyh.gro -o 6kyh-PBC.gro -bt dodecahedron -d 1.0

  1. 真空最小化

gmx grompp -f em-vac-pme.mdp -c 6kyh-PBC.gro -p 6kyh.top -o em-vac.tpr

gmx mdrun -v -deffnm em-vac

  • em-vac-pme.mdp
; 传递给预处理器的一些定义
define          = -DFLEXIBLE    ; 使用柔性水模型而非刚性模型, 这样最陡下降法可进一步最小化能量

; 模拟类型, 结束控制, 输出控制参数
integrator      = steep         ; 指定使用最陡下降法进行能量最小化. 若设为`cg`则使用共轭梯度法
emtol           = 500.0         ; 若力的最大值小于此值则认为能量最小化收敛(单位kJ mol^-1^ nm^-1^)
emstep          = 0.01          ; 初始步长(nm)
nsteps          = 50000          ; 在能量最小化中, 指定最大迭代次数
nstenergy       = 1             ; 能量写出频率
energygrps      = Syste
### 超详细教程:AnythingLLM 搭配 Deepseek 使用指南 #### 准备环境 为了确保能够顺利使用 AnythingLLM 和 Deepseek 构建个人知识库,需先确认计算机已安装必要的依赖项。通常情况下,这涉及到 Python 环境以及 Git 的配置。 #### 下载并启动 Deepseek 大模型 通过 CMD 命令行工具来获取指定版本的 Deepseek 模型,并立即执行该模型。具体操作是在命令提示符下键入 `ollama run deepseek-r1:7b` 来实现自动化安装过程[^2]。 ```bash ollama run deepseek-r1:7b ``` 此指令不仅会下载所需的 Deepseek 模型文件,还会初始化其运行环境以便后续调用。 #### 配置 AnythingLLM 接口 为了让 AnythingLLM 正确识别并与 Deepseek 进行交互,可能需要调整一些参数设置或编写特定脚本来定义两者之间的通信协议。这部分的具体实施取决于所选框架的支持程度和个人需求偏好。 考虑到数据隐私的重要性,采用离线方式部署 DeepSeek R1 可有效减少外部风险,同时允许更灵活的应用场景设计[^3]。 #### 测试连接与功能验证 一旦完成了上述准备工作,则可以通过简单的查询请求测试整个系统的连通性和响应效率。例如向系统提交一个问题或者一段文本片段,观察返回的结果是否符合预期。 对于希望进一步优化性能或是探索更多高级特性的用户来说,深入研究官方文档和技术社区中的案例分享将是不可或缺的学习途径之一。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值