1,已知一个图g和m>0种颜色,在只准使用这m种颜色对g的结点着色的情况下,是否能使图中任何相邻的两个结点都具有不同的颜色呢?这个问题称为m-着色判定问题。
2,在m-着色最优化问题则是求可对图g着色的最小整数m。这个整数称为图g的色数。这是求图的最少着色问题,求出m的值。
题目的解法:
第一个问题,m-着色判定问题:
可以通过回溯的方法,不断的为每一个节点着色,在前面n-1个节点都合法的着色之后,开始对第n个节点进行着色,这时候枚举可用的m个颜色,通过和第n个节点相邻的节点的颜色,来判断这个颜色是否合法,如果找到那么一种颜色使得第n个节点能够着色,那么说明m种颜色的方案是可行的。返回真即可:
第二个问题:求出最少的着色数m
有了上面的问题的积累,对于这个问题就很简单了,只要从1到n枚举颜色数,来调用上面的DFS(0, m),如果有一次调用返回true,那么这时这个颜色就是我们要求的最少的着色数。
#include <iostream>
#include<vector>
#include<cstdio>
using namespace std;
const int maxn=10005;
vector<int> g[maxn];
int color[maxn];
int colornum=1000;
int n;
bool ok(int t)
{
vector<int>::iterator it;
for(it=g[t].begin();it!=g[t].end();it++)
{
if(color[t]==color[*it])
return false;
}
return true;
}
bool dfs(int t,int m)
{
if(t>=n)
return true;
else
{
for(int i=1;i<=m;i++)
{ color[t]=i;
if(ok(t))
{
if(dfs(t+1,m))
return true;
}
color[t]=0;
}
}
return false;
}
int main()
{
cin>>n;
int k;
cin>>k;
for(int i=0;i<k;i++)
{
int x,y;
cin>>x>>y;
g[x].push_back(y);
g[y].push_back(x);
}
for(int i = 1; i<= n; i++)
{
if(dfs(0, i))
{
cout << "the min colors :" << i << endl;
break;
}
}
return 0;
}