图着色问题(2.m色)

1,已知一个图g和m>0种颜色,在只准使用这m种颜色对g的结点着色的情况下,是否能使图中任何相邻的两个结点都具有不同的颜色呢?这个问题称为m-着色判定问题

2,在m-着色最优化问题则是求可对图g着色的最小整数m。这个整数称为图g的色数。这是求图的最少着色问题,求出m的值。

题目的解法:

第一个问题,m-着色判定问题:

可以通过回溯的方法,不断的为每一个节点着色,在前面n-1个节点都合法的着色之后,开始对第n个节点进行着色,这时候枚举可用的m个颜色,通过和第n个节点相邻的节点的颜色,来判断这个颜色是否合法,如果找到那么一种颜色使得第n个节点能够着色,那么说明m种颜色的方案是可行的。返回真即可:


第二个问题:求出最少的着色数m

有了上面的问题的积累,对于这个问题就很简单了,只要从1到n枚举颜色数,来调用上面的DFS(0, m),如果有一次调用返回true,那么这时这个颜色就是我们要求的最少的着色数。


#include <iostream>
#include<vector>
#include<cstdio>
using namespace std;
const int maxn=10005;
vector<int> g[maxn];
int color[maxn];
int colornum=1000;
int n;
bool ok(int t)
{
    vector<int>::iterator it;
    for(it=g[t].begin();it!=g[t].end();it++)
    {
        if(color[t]==color[*it])
            return false;
    }
    return true;
}
bool dfs(int t,int m)
{
    if(t>=n)
        return true;
  else
  {
      for(int i=1;i<=m;i++)
    {   color[t]=i;
        if(ok(t))
        {
            if(dfs(t+1,m))
                return true;
        }
        color[t]=0;
    }
  }
    return false;
}
int main()
{
    cin>>n;
    int k;
    cin>>k;
    for(int i=0;i<k;i++)
    {
        int x,y;
        cin>>x>>y;
        g[x].push_back(y);
        g[y].push_back(x);
    }
    for(int i = 1; i<= n; i++)
    {
      if(dfs(0, i))
      {
             cout << "the min colors :" << i << endl;
             break;
      }
     }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值