题目‘点击打开链接
’是一个修加油站的题目;
要求能够能够到达每个城市,并且能够回到初始点,车走路的耗油距离是有限的 ,必须在油用完之前加油,
如果不能到就输出-1,否则输出建加油站的钱(以二进制形式输出),i处建站,用钱2的i-1次方;(求最小建站花费)
所以规律,ok【i】数组,如果建站就输出1,不建就输出0;(倒叙输出,因为是从大到小)
当时并没有任何思路;
看了看题解思路是真的奇妙:
就是现在每个点都进行建站,然后从花钱最多站开始去除,(如果全部建站都不行,就是-1) 除到最少建站数就是最少建站花费;
dis数组存从当前点到最近的加油站的距离,判断分两个方面:
1.如果当前点也有加油站,dis[i] <= D就可以;
2.如果当前点决定不建立加油站,那么dis[i]要小于D/2;
不符合要求就不能拆这个加油站。
代码,注意细节
#include <iostream>
#include<algorithm>
#include<string>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=150;
const int inf=0x3f3f;
int dis[maxn];
int vis[maxn];
int e[maxn][maxn];
int ok[maxn];
int n,d;
struct node
{
int x,y;
node(int xx=0,int yy=0){x=xx;y=yy;}
};
node s[maxn];
double getdis(int i,int j)
{
return sqrt((s[i].x-s[j].x)*(s[i].x-s[j].x)+(s[i].y-s[j].y)*(s[i].y-s[j].y));
}
bool dfs()
{
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
{
if(ok[i])//如果建站 耗费距离是0
dis[i]=0;
else
dis[i]=inf;
}
//cout<<dis[2]<<endl;
//dis[0]=0;
vis[0]=1;
queue<int> q;
q.push(0);
while(q.size())
{
int u=q.front();
q.pop();
for(int i=0;i<n;i++) //更新每个点求最小行进距离(距离最近加油站)
{
if(e[u][i]<=d&&!vis[i]) //注意=
{
dis[i]=min(dis[i],dis[u]+e[u][i]);
if(ok[i])
{q.push(i);
vis[i]=1;//为何要ok时才标记走过,因为不是加油站就需要继续进行更新最小值,加油站就不用了,因为他dis值为0
}
}
}
}
for(int i=0;i<n;i++)
{
if(ok[i]&&!vis[i]) //如果是加油站却从1到不了,那返回错误
return false;
if(!ok[i]&&dis[i]*2>d)//别写dis[i]>(double)d/2了 ,如果不是加油站,到最近加油站的来回距离还大于d/2 ,那也不行
return false;
}
return true;
}
void solve()
{
for(int i=0;i<n;i++) //标记所有加油站
ok[i]=1;
if(!dfs()) //全部加油站都不行
{
cout<<"-1"<<endl;
return ;
}
for(int i=n-1;i>=0;i--)
{
ok[i]=0;
if(!dfs()) //如果不行就在此处有站
ok[i]=1;
}
int j=n-1;
while(ok[j]==0)j--; //去除前导0
for(int i=j;i>=0;i--)
cout<<ok[i];
cout<<endl;
}
int main()
{
while(cin>>n>>d)
{
for(int i=0;i<n;i++)
{
cin>>s[i].x>>s[i].y;
}
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
e[i][j]=ceil(getdis(i,j));//求两点间距离
}
solve();
}
// cout << "Hello world!" << endl;
return 0;
}
引子 博客点击打开链接