知识图谱:信息抽取简易流程

本文介绍了知识图谱构建过程中信息抽取的关键步骤,包括使用BRAT工具进行训练数据标注,详细阐述了BRAT的安装、使用方法,以及如何将标注数据转换为BIO格式训练模型。接着,文章讨论了使用BERT-BiLSTM-CRF模型进行NER,并给出了训练和实施过程中的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

        一、标注训练数据

        二、训练数据模型

        三、实现NER

前言

        知识的来源多为文本,现阶段常见的知识图谱也大多是基于文本的。相较于结构化数据,非结构化数据需要更为复杂的处理,才能从中抽取出实体和关系等内容并将其转化为符合知识图谱需要的知识。

一、标注训练数据

        使用工具:Brat 

## BRAT安装

 0、安装条件

(1)运行于Linux系统

(2)brat(v1.3p1)仅支持py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值