最长回文子字符串(Longest Palindromic Substring)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_36246371/article/details/52792323

Given a string S, find thelongest palindromic substring in S. You may assume that the maximumlength ofS is 1000, and there exists one unique longest palindromicsubstring.

给定一个字符串S,在S中找到最长的回文字符串,你可以假设S的最长长度为1000,而且只存在唯一的最长回文字符串。

思路:一般而言我们一段字符串判断是否回文,我们用两个游标分别放在字符串的头部和尾部,然后两个游标相向同速移动,在移动的过程中出现字符不相同的时,该字符串就不是回文的,否则就是回文的。

然而在本题目中如果还是要用这样的思路去解决问题,那么我们首先要找到的是第一对相同的字符,然后根据前面描述的方法,判断该范围内的字符串是否为回文字符串,如果是,跟当前记录的最大长度作比较,决定当前找到的最长回文字符串的值,然后再找下一对相同的字符,再去判断是否回文……以此类推。

很显然,我们要找到所有的相同字符对的时间复杂度已经是O(n^2),再加上判断回文字符串的时间,如果字符串长一些的话,要算出结果是很耗时间的。所有我们需要找一种更为有效的方法。

判断回文我们可以从最中间的字符出发,然后向两边拓展,那么这样扫描字符串的时间复杂度就是O(n),向外拓展直至回文不成立,然后记录最长的回文字符串,这次整个算法的时间复杂度就大大降下来了。

代码如下:

public class Solution {
    public String findPalindrome(String s, int left, int right) {
        int n = s.length();
        int l = left;
        int r = right;
        while (l >= 0 && r <= n - 1 && s.charAt(l) == s.charAt(r)) {
            l--;
            r++;
        }
        return s.substring(l + 1, r);
    }

    public String longestPalindrome(String s) {
        int n = s.length();
        if (n<=1) return s;

        String longest = "";

        String str;
        for (int i=0; i<n-1; i++) {
            str = findPalindrome(s, i, i);
            if (str.length() > longest.length()){
                longest = str;
            }
            str = findPalindrome(s, i, i + 1);
            if (str.length() > longest.length()){
                longest = str;
            }
        }

        return longest;
    }
}


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页