最长回文子字符串(Longest Palindromic Substring)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_36246371/article/details/52792323

Given a string S, find thelongest palindromic substring in S. You may assume that the maximumlength ofS is 1000, and there exists one unique longest palindromicsubstring.

给定一个字符串S,在S中找到最长的回文字符串,你可以假设S的最长长度为1000,而且只存在唯一的最长回文字符串。

思路:一般而言我们一段字符串判断是否回文,我们用两个游标分别放在字符串的头部和尾部,然后两个游标相向同速移动,在移动的过程中出现字符不相同的时,该字符串就不是回文的,否则就是回文的。

然而在本题目中如果还是要用这样的思路去解决问题,那么我们首先要找到的是第一对相同的字符,然后根据前面描述的方法,判断该范围内的字符串是否为回文字符串,如果是,跟当前记录的最大长度作比较,决定当前找到的最长回文字符串的值,然后再找下一对相同的字符,再去判断是否回文……以此类推。

很显然,我们要找到所有的相同字符对的时间复杂度已经是O(n^2),再加上判断回文字符串的时间,如果字符串长一些的话,要算出结果是很耗时间的。所有我们需要找一种更为有效的方法。

判断回文我们可以从最中间的字符出发,然后向两边拓展,那么这样扫描字符串的时间复杂度就是O(n),向外拓展直至回文不成立,然后记录最长的回文字符串,这次整个算法的时间复杂度就大大降下来了。

代码如下:

public class Solution {
    public String findPalindrome(String s, int left, int right) {
        int n = s.length();
        int l = left;
        int r = right;
        while (l >= 0 && r <= n - 1 && s.charAt(l) == s.charAt(r)) {
            l--;
            r++;
        }
        return s.substring(l + 1, r);
    }

    public String longestPalindrome(String s) {
        int n = s.length();
        if (n<=1) return s;

        String longest = "";

        String str;
        for (int i=0; i<n-1; i++) {
            str = findPalindrome(s, i, i);
            if (str.length() > longest.length()){
                longest = str;
            }
            str = findPalindrome(s, i, i + 1);
            if (str.length() > longest.length()){
                longest = str;
            }
        }

        return longest;
    }
}


阅读更多

Longest Palindromic Substring 最长回文子串问题?JAVA

06-20

rnrn```rnpublic class Solution rn public String longestPalindrome(String s) rn String ret = "";rn for (int i = 0; i < s.length(); i++) rn for (int j = 0; i - j >= 0 && i + j < s.length(); j++) rn if (s.charAt(i - j) == s.charAt(i + j)) rn if (j * 2 + 1 > ret.length()) rn ret = s.substring(i - j, i + j + 1);rn rn else rn break;rn rn rn for (int j = 0; i - j >= 0 && i + 1 + j < s.length(); j++) rn if (s.charAt(i - j) == s.charAt(i + j + 1)) rn if ((j + 1) * 2 + 1 > ret.length()) rn ret = s.substring(i - j, i + j + 2);rn rn else rn break;rn rn rn rn return ret;rn rnrn public static void main(String[] args) rn String s = "cdabbaef";rn Solution a = new Solution();rn System.out.println(a.longestPalindrome(s));rn rn rn```rnrnrnrn思路就是 因为回文字符串是以中心轴对称的,所以如果我们从下标 i 出发,用2个指针向 i 的两边扩展判断是否相等,那么只需要对0到rnn-1的下标都做此操作,就可以求出最长的回文子串。但需要注意的是,回文字符串有奇偶对称之分,即"abcba"与"abba"2种类型,rn因此需要在代码编写时都做判断。 rn编译也通过了。rn但是后来想到一个问题 例如:cdabbaef 里abba的子串 改成abea 源字符串变成cdabeaef 时 按照偶数情况的代码 结果也会输出abea 因为abea里的e没有比较 但是运行是发现 这个问题 已经被解决了 但是我想不通哪里避免了这种情况 请帮我分析一下

没有更多推荐了,返回首页