分类算法
天才狂想者
这个作者很懒,什么都没留下…
展开
-
tensorflow 搭建神经网络框架
1)准备数据,打开文件夹读取数据def read_data(data_dir): datas = [] labels = [] for fname in os.listdir(data_dir): fpath = os.path.join(data_dir, fname) image = Image.open(fpath) ...原创 2019-11-23 00:27:00 · 293 阅读 · 0 评论 -
目标检测 One Stage方法
One Stage的目标检测是针对于Two Stage来说的。说的简单一点,One Stage方法讲究一步到位,通过主干网络+回归网络直接生成目标位置和类别,所以叫做One Stage方法。Two Stage方法则相对于One Stage方法多了一个RPN网络,用来预测检测框,然后在对这些检测框进行判断。One Stage方法使用CNN来进行特征提取,直接回归物体的类别概率和位置坐标值,相...原创 2019-11-02 22:30:07 · 464 阅读 · 0 评论 -
AdaBoost
AdaBoost算法是一种基于迭代的分类算法。在说AdaBoost之前,我们应该先了解Boost算法。Boost字面意思有增长之意,事实也是如此,Boost算法的核心是多个弱分类器“增长”为一个强分类器。简而言之,Boost算法就是先训练较为简单的弱分类器,弱分类器可以理解为一种逻辑简单的分类器,它的训练和实现较为容易,然后再将他们“组合”成一个强分类器。而采用不同的损失函数,就有着不同类型的...原创 2019-09-07 17:25:22 · 517 阅读 · 0 评论 -
HOG
HOG是一种可以基于形状边缘特征的描述算子。它的思想是通过计算像素点的方向与幅度,统计其梯度直方图,该直方图作为一种特征值,可以直接用作SVM上直接进行分类检测。方法步骤如下:1)对于图片进行预处理,裁剪,用Gamma校正法对输入图像进行颜色空间的标准化,并将图片转化为灰度图(不需要颜色信息)。2)计算每个像素的梯度(方向和幅度)。3)划分滑动窗口,在滑动窗口内划分块,在块内划分出...原创 2019-09-14 20:16:37 · 958 阅读 · 0 评论 -
haar分类
今天说一说haar分类算法。首先介绍haar-like特征。haar-like的特征有边缘特征、线性特征、中心特征和对角线特征。我们使用特征模板来表示特征的计算,如图所示:这些特征分别对应着不同的矩阵以便于进行计算,比如对应的矩阵可以为,计算的最后结果就是白色区域的像素值(可以为灰度)减去 黑色区域的像素值。需要注意的是这个矩阵是可以放缩大小的,并且这个矩阵是可以在图片...原创 2019-09-21 17:52:35 · 2758 阅读 · 0 评论 -
非极大值抑制
非极大值抑制(Non-maximum suppression,NMS)的意思就是抑制不是极大值的元素。非极大值抑制可以用在很多的方面, 今天讨论一下它在目标框(Bounding Box)上的应用。我们在做目标识别的时候,有两个主要要实现的目标。一是目标的识别,即识别物体是什么, 是猫或者是狗之类的物体。二是识别目标的位置,我们需要将识别到的物体用框框起来。非极大值抑制可以应用在目标的边框选取上...原创 2019-09-28 19:13:31 · 288 阅读 · 0 评论 -
基于图的分割
基于图的分割(Graph-Based Segmentation),就是利用图的方法来将图片进行分割。首先介绍图的知识。我们将一个图定义为一个二元组的形式: ,其中是顶点的集合,是连接中两个不同顶点集合。 如果E中的顶点对(边)是有序的,则称G为有向图。如果顶点对是无序对,则称G是无向图。如图所示(网上图片):树:可以看做没有回路特殊的图,树中的任意节点不构成闭合回路。比如我们最常见...原创 2019-10-07 09:09:19 · 712 阅读 · 0 评论