AdaBoost

AdaBoost算法是一种基于迭代的分类算法。在说AdaBoost之前,我们应该先了解Boost算法。

Boost字面意思有增长之意,事实也是如此,Boost算法的核心是多个弱分类器“增长”为一个强分类器。简而言之,Boost算法就是先训练较为简单的弱分类器,弱分类器可以理解为一种逻辑简单的分类器,它的训练和实现较为容易,然后再将他们“组合”成一个强分类器。而采用不同的损失函数,就有着不同类型的Boost算法,AdaBoost就是其中的一种。

AdaBoost算法具体实现:

1)给数据集中的每一个样本赋予一个初始权重(根据具体情况决定如何分配)。并确定弱分类器G_{m}(x)(m是迭代次数),对每

一个样本进行类型判断。

2)确定弱分类器G_{m}(x)(m是迭代次数),对每一个样本进行类型判断。计算误差率\varepsilon = \sum_{i=1}^{N}w_{m,i}I(G_{m}(x)),N指的是样本数

 

量,m是迭代次数,I(G_{m}(x))是弱分类器判断结果

 

3)计算弱分类器权重\alpha =\frac{1}{2}ln(\frac{1-\epsilon }{\epsilon }),根据\alpha求得该次G_{m}(x)权重改变,w_{m+1,i}=\frac{w_{m,i}}{z_{m}}e^{-\alpha _{m}y_{i}G_{m}(x_{i})},其中

 

z_{m}=\sum_{i = 1}^{N}w_{m,i}e^{-\alpha _{m}y_{i}G_{m}(x_{i})}为归一化因子,使样本的概率分布和为1,x_{i}为特征,y_{i}为标签。

 

4)更新权重,若误差率达到0或者达到迭代次数m则结束,否则返回第二步。

 

最后的分类器结果为F(x,m)=\sum_{i = 1}^{m}\alpha _{i}G_{i}(x),m为迭代次数,x为特征向量,\alpha =\frac{1}{2}ln(\frac{1-\epsilon }{\epsilon })(每次迭代都会计算一次)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值