最新2018.1.1深度学习平台搭建 Win10+GPU+Tensorflow+keras+CUDA --2018.1.1

搭建平台-软件安装 专栏收录该内容
38 篇文章 0 订阅

标签(空格分隔): 环境配置



先看看你的GPU 支持的CUDA 和CUDNN 版本: 从这里
还有了解一下你的GPU: GPU计算能力一览表
再看看是否用tf,如果用TF注意了:CUDA只支持 计算能力 3.0 以上的,从这里查看是否支持, 或者这里

再下载需要的文件和软件:

  1. VS2015: cn_visual_studio_enterprise_2015_x86_x64_dvd_6846222
  2. Anaconda4.2 : Anaconda3-4.2.0-Windows-x86_64
  3. CUDA8.0 : cuda_8.0.44_win10
  4. CUDNN6.0 : cudnn-8.0-windows10-x64-v6.0
  5. drivers for Nvidia

1.安装过程

VS2015安装,这个老生常谈了,不说啦。
Anaconda : 全部勾选就装好了。
CUDA 安装: 这里有安装教程,这个很简单
CUDNN 安装: 同上,这个文档里面有,如果英文能力稍弱,那就看这里

安装下列包之前,请先跳到 2.测试CUDA, 是否安装成功。
接下来为了避免安装过程出现错误,我们需要创建一个虚拟环境,如何用conda创建
需要学习一下了,win10下conda 使用教程

tensorflow-gpu版安装: pip install tensorflow-gpu
keras 安装: pip install keras, 使用conda install keras 会把CPU版的Tensorflow也装上。

2.测试CUDA

测试之前,先使用VS2015编译
搜索:Sample_vs2015 如下图。
寻找

编译: Release x64

编译

编译完成,debug一下吧。

debug

测试一下: 按照下图输入。
nvcc

如果符合就继续这一步
这里注意:cd 到 下图中的目录,执行deviceQuery.exe,出现下图说明你很厉害,成功了。

CD

3.debug

等你把tensorflow-gpu、keras装好了,debug一下。
接下来注意了,运行这个文件

如果出现下列信息,恭喜你!安装成功。

(py35_gpu) C:\Users\aixin>python C:\Users\aixin\Desktop\tf_install_scripts.py
TensorFlow successfully installed.
The installed version of TensorFlow includes GPU support.

(py35_gpu) C:\Users\aixin>

4.相关链接

写在最后:这事儿没完! 接下来才是重点!

Buggggggggggggggggggggggggggggg:

当我运行我自己的网络时候发现

Training
2018-01-01 11:37:44.267451: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2018-01-01 11:38:08.293880: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Found device 0 with properties:
name: GeForce GT 610 major: 2 minor: 1 memoryClockRate(GHz): 1.62
pciBusID: 0000:01:00.0
totalMemory: 2.00GiB freeMemory: 1.65GiB
2018-01-01 11:38:08.294297: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1093] Ignoring visible gpu device (device: 0, name: GeForce GT 610, pci bus id: 0000:01:00.0, compute capability: 2.1) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.0.Epoch 1/30, Time: 958.5767695903778

1>其中有一句:
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2

如何解决?
答案:在这里我之前博客

2>还有一个错误

Ignoring visible gpu device (device: 0, name: GeForce GT 610, pci bus id: 0000:01:00.0, compute capability: 2.1) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.0.

如何解决?
答案:过程很复杂。。我先后查看了,stackflow知乎

最后我从 这里 发现:

GPU-tf-requirement

再看看我的GPU:

Found device 0 with properties:
name: GeForce GT 610 major: 2 minor: 1 memoryClockRate(GHz): 1.62
pciBusID: 0000:01:00.0
totalMemory: 2.00GiB freeMemory: 1.65GiB

计算能力表对照:2.1 。。。 还让我各种debug,原来人家就不支持小计算能力的显卡

GeForce GT 610: 2.1

那有没有办法在2.x下GPU,使用t’fensorflow实现加速呢?
各种查stackflow。在这里找到解决
办法:Nooooooooooooooooooooooo!!!
最后解决办法: 换显卡

那么选哪个呢?
京东看看,一看傻眼了。
显卡价格截图

各种网上deep digging!!!
这里深度学习的GPU:深度学习中使用GPU的经验和建议 写的很全面:基本回答了:

1> 需要多GPU并行么?
2>选哪个品牌?
3>选定厂商之后,选哪个系列?

参考链接

深度学习平台安装 Win10+GPU+Tensorflow 2017.11

转载和疑问声明

如果你有什么疑问或者想要转载,没有允许是不能转载的哈
赞赏一下能不能转?哈哈,联系我啊,我告诉你呢 ~~
欢迎联系我哈,我会给大家慢慢解答啦~~~怎么联系我? 笨啊~ ~~ 你留言也行

你关注微信公众号1.机器学习算法工程师:2.或者扫那个二维码,后台发送 “我要找朕”,联系我也行啦!

(爱心.gif) 么么哒 ~么么哒 ~么么哒
码字不易啊啊啊,如果你觉得本文有帮助,三毛也是爱!

我祝各位帅哥,和美女,你们永远十八岁,嗨嘿嘿~~~

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值