常见的模型评价和在python中的实现
模型 | 模型特点 | 支持库 |
逻辑回归 | 比较基础的线性分析模型,很多时候是简单有效的选择 | sklearn.linear_model |
SVM | 强大的模型,可以用来回归、预测、分类等,而根据选取不同的核函数。模型可以是线性的/非线性的 | sklearn.svm |
决策树 | 基于“分类讨论、逐步细化”思想的分类模型,模型直观,易解释 | sklearn.tree |
随机森林 | 思想跟决策树类似,精度通常比决策树要高,缺点是由于其随机性,丧失了决策树的可解释性 | sklearn.ensemble |
朴素贝叶斯 | 基于概率思想的简单有效的分类模型,能够给出容易理解的概率解释 | sklearn.naive_bayes |
神经网络 | 具有强的的拟合能力,可以用于拟合、分类等,他有很多个增强版本,如递归神经网络,卷积神经网络、自编码器等,这些是深度学习的模型基础 | Keras |
建模的第一个步骤是建立一个对象,这个对象是空白的,需要进一步训练,然后我们要设置模型的参数,接着就是通过fit()方法对模型进行训练,最后通过predict()方法预测结果。当然,还有一些方法有助于我们完成对模型的评估,如score()等。