数据分析与挖掘笔记(十三)------挖掘建模之分类预测模型特点

常见的模型评价和在python中的实现

模型

模型特点

支持库

逻辑回归

比较基础的线性分析模型,很多时候是简单有效的选择

sklearn.linear_model

SVM

强大的模型,可以用来回归、预测、分类等,而根据选取不同的核函数。模型可以是线性的/非线性的

sklearn.svm

决策树

基于“分类讨论、逐步细化”思想的分类模型,模型直观,易解释

sklearn.tree

随机森林

思想跟决策树类似,精度通常比决策树要高,缺点是由于其随机性,丧失了决策树的可解释性

sklearn.ensemble

朴素贝叶斯

基于概率思想的简单有效的分类模型,能够给出容易理解的概率解释

sklearn.naive_bayes

神经网络

具有强的的拟合能力,可以用于拟合、分类等,他有很多个增强版本,如递归神经网络,卷积神经网络、自编码器等,这些是深度学习的模型基础

Keras

建模的第一个步骤是建立一个对象,这个对象是空白的,需要进一步训练,然后我们要设置模型的参数,接着就是通过fit()方法对模型进行训练,最后通过predict()方法预测结果。当然,还有一些方法有助于我们完成对模型的评估,如score()等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>