问题描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
样例输入
3 3
0 0 0
1 1 1
1 1 1
1 1 U 6
样例输出
0 0
代码
#include<stdio.h>
//1、2、3、4代表方向
#define U 1
#define D 2
#define L 3
#define R 4
#define black 1
#define white 0
int board[100][100];
int dir,x,y,count=0;//dir为方向,x、y为坐标,count统计步数
void move(int k){
if(count==k) return ;//递归结束标志
int color=board[x][y];//当前格子颜色
int u=x,v=y;//保存原来坐标
//判断并且移动蚂蚁
if(color==black){
switch(dir){
case U: {
y++;
dir=R;
break;
}
case D: {
y--;
dir=L;
break;
}
case L: {
x--;
dir=U;
break;
}
case R: {
x++;
dir=D;
break;
}
}
board[u][v]=white;//改变格子颜色
}
if(color==white){
switch(dir){
case U:{
y--;
dir=L;
break;
}
case D:{
y++;
dir=R;
break;
}
case L:{
x++;
dir=D;
break;
}
case R:{
x--;
dir=U;
break;
}
}
board[u][v]=black;
}
count++;
//走下一格
move(k);
}
int main(){
int m,n,i,j;
scanf("%d%d",&m,&n);
for(i=0;i<m;i++){
for(j=0;j<n;j++){
scanf("%d",&board[i][j]);
}
}
int k;
scanf("%d%d",&x,&y);
getchar();
char s;
s=getchar();
switch(s){
case 'U':dir=1;break;
case 'D':dir=2;break;
case 'L':dir=3;break;
case 'R':dir=4;break;
}
scanf("%d",&k);
move(k);
printf("%d %d",x,y);
return 0;
}