设 int 类型 a 和 b ,且 a>=b:
方案一:(a+b)/2;
该方案向下取整,可能会产生上溢,使程序崩溃。
方案二:无符号右移 (a + b)>>> 1;
该方案向下取整,不会产生上溢,且快于方案三。
PS:C++中没有无符号右移,实现方法:int mid = ((unsigned)a + (unsigned)b)>>> 1;
方案三:b+(a-b)/2 或 b+(a-b)>>1;
无上溢风险。
方案四:(a&b)+((a^b)>>1)
位运算,无上溢风险。
原理:a&b 就是a和b相同位数的平均值,而(a^b)是a和b不同位数的和,所以我们需要将它右移一位,相当于除以2,即为((a^b)>>1),最后加起来就是所求的平均值了。
推导过程:a + b = (a&b) 2 + (a^b) ——> average=((a&b)2+(a^b))/2 ——> average=(a&b) + (a^b)>>1
Eg:两个数为15和5。15二进制序列低位为1111,5二进制序列低位为0101。
按位与(&)运算后得到两者相同的部分0101;按位异或(^)运算后得到两者不同的部分1010。
因为相同的部分两者都有,所以要乘以二,再加上不同的部分(至此为15+5)再除以2就是平均值(10)。
0101为5,乘以2为10,加上1010(10)为20,再除以2就是平均值10。