1. limitOrdinal(a) ∧ (S ⊂ a) ∧ (sup S = a) → cf a ≤ OrdT(S) 。
证:
根据,limitOrdinal(a) ∧ (S ⊂ a) ∧ (sup S = a) ,可集合 S ⊂ a,看作是上升序列 {sᵢ},有
lim ( i → cf a ) sᵢ = sup S = a,sᵢ ∈ S。
另,有,lim ( i → cf a ) bᵢ = a;
所以,有 cf S = cf a 。
因,对于任意 a,有 cf a ≤ OrdT(a),可以,看作,序型(Order Type)描述了整个序列的形态,而共尾(Cofinality)只描述了序列尾段的形态。
因此,cf S ≤ OrdT(S) ,有 cf a ≤ OrdT(S)。
2. (b₀ ≤ b₁ ≤ ... ≤ bᵢ ≤ ...) ∧ (i < r) ∧ lim (i→r) bᵢ = a → cf r = cf a
证:
把序列 〈bᵢ: i < r〉 的索引值 i 看作是一个增长序列 〈i: i < r〉,有 r = lim( v → cf r) i(v);
又,a = lim ( v → cf r) b(i(v));
那么有,cf a ≤ cf r,其中 cf a 是最小序数使得 a = lim ( v → cf a) b(i(v))。
另外,令 a = lim ( v → cf a ) aᵥ,即 a 是某一序列〈aᵥ〉的极限。
那么,对于任一 v < cf a,有对应 iᵥ, 使得 biᵥ > aᵥ。
由此,有,a = lim ( v → cf a ) biᵥ,
那么,r = lim ( v → cf a ) iᵥ,
因此,有 cf r ≤ cf a。
综上,有 cf r = cf a。
3. 对于无限基数 a,如果 cf a = a,那么 a 是规范基数(Regualr Cardinal);如果 cf a < a,那么 a 是单体基数(Singular Cardinal)。
那么,有,对于任意极限序数 a,其共尾值 cf a 是规范基数(Regular Cardinal)。即
limit_ordinal(a) → regular_cardinal(cf a)
≡ limit_ordinal(a) → cf (cf a) = cf a ∧ is_cardinal(cf a)
证:
如果一个序数为基数,那么其基数不等于任意小于它的序数的基数,即
is_ordinal(a) ∧ ∀b<a.(|a| ≠ |b| ) → is_cardinal(a)
那么,需要证明,对于 cf a,所有小于 cf a 序数的基数,都不等于 |cf a|。因 cf a 的定义为最小的极限序数,使得一上升序列能逼近 a,如果,存在另一个序数 b, b < cf a,且 |b| = |cf a|,那么,有 b = cf a,与 b < cf a矛盾,因此, cf a 是基数。
另外,cf (cf a) = cf a 在上面已有证明。
综上,cf a 为规范基数(Regular Cardinal)
即, limit_ordinal(a) → regular_cardinal(cf a)。
4. 给定一个极限序数 K,有,K的子集 X ⊂ K,
如果 sup X < K,那么 X 是有界的,即 sup X < K → bounded(X);
如果 sup X = K,那么 X 是无界的,即 sup X = K → unbounded(X)。
那么,给定一个阿列夫数 ℵ,如果 X ⊂ ℵ 且 |X| < cf ℵ,那么 X 是有界的。
证:
通过有界的定义,可证。
阿列夫数 ℵ 是极限序数, X ⊂ ℵ是其子集。
因,|X| < cf ℵ,那么,存在一一对应(one on one)函数 f: |X| ↔ X;
因,|X|是基数,亦是序数,因此,为良序,那么,令 i, j ∈ |X|,有 i < j → f(i) < f(j)。
又,ℵ = sup { nᵢ: i → cf ℵ },且 |X| < cf ℵ,因此,存在一单射上升函数 g: |X| → cf ℵ。
另,h(x) = g(f(x)),函数 h 为单射上升函数 X → cf ℵ,
上升序列〈 nᵢ: i → cf ℵ〉,可用对应的上升函数 s: cf ℵ → N 表示,且 s 为一一对应函数(one on one),且 sup N = ℵ。那么
存在另一函数,h'(x) = s(h(x),该函数亦为单射上升函数 X → N,因此,
有 sup X < sup N = ℵ。因此,X 有界。
另外,如果 r < cf ℵ 且 f: r → ℵ,那么 f 的值域是有界的,即 Ran(f) 有界。
证: 只要 f 是函数,其值域 |Ran(f)| ≤ |r| ≤ r,因此 有 |Ran(f)| ≤ r < cf ℵ,因此,Ran(f) 有界。
5. 存在任意大(arbitrarily large)的单体基数(Singular Cardinal, cf a < a)。
证:给定任意序数 a,有 ℵ_(a+ℕ),其 cf ℵ_(a+ℕ) = ℕ < ℵ_(a+ℕ)。
注:下划线 _,指示的是下角标,即,ℵ_a ≡ ℵₐ 。另,符号 ^,为上角标,ℕ^2 ≡ ℕ² 。